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PANEL DATA BINARY RESPONSE MODEL IN A TRIANGULAR SYSTEM 1

Amaresh K Tiwari2

We propose a new control function (CF) method for binary response outcomes
in a triangular system with unobserved heterogeneity of multiple dimensions. The
identified CFs are the expected values of the heterogeneity terms in the reduced
form equations conditional on the endogenous, Xi ≡ (xxxi1, . . . ,xxxiT ), and the ex-
ogenous, Zi ≡ (zzzi1, . . . , zzziT ), variables. The method requires weaker restrictions
compared to traditional CF methods for triangular systems with imposed struc-
tures similar to ours, and point-identifies average partial effects with discrete
instruments. We discuss semiparametric identification of structural measures us-
ing the proposed CFs. An application and Monte Carlo experiments compare
several alternative methods with ours.

Keywords: Control Functions, Unobserved Heterogeneity, Identification, In-
strumental Variables, Average Partial Effects, Child Labor.

JEL Classification: C13, C18, C33

1. INTRODUCTION

Chamberlain (2010) and Arellano and Bonhomme (2011) point out that when panel data
outcomes are discrete, serious identification issues arise when covariates are correlated with
unobserved heterogeneity. Chamberlain shows that for binary choice model with fixed T ,
quantities of interest such as Average Partial Effect (APE) may not be point identified,
or may not possess a

√
N consistent estimator. Notwithstanding this underidentification

result, various methods have been proposed to estimate the structural measures of interest.
Arellano and Bonhomme (2011) provide an overview, and categorize, of some of the

methods developed to estimate the quantities of interest. These include the fixed effect (FE)
approach that treat heterogeneity or individual effects as parameters to be estimated, where
several approaches have been proposed to correct for bias due the incidental parameter
problem. Wooldridge (2010), points out that the FE approach, though promising, suffers
from a number of shortcomings. First, the number of time periods needed for the bias
adjustments to work well is often greater than is available in many applications. Secondly,
the recent bias adjustments methods require the assumptions of stationarity and weak
dependence; in some cases, the strong assumption of serial independence (conditional on
the heterogeneity) is maintained. However, in empirical work dealing with linear models, it
has been found that idiosyncratic errors exhibit serial dependence. Also, “the requirement
of stationarity is strong and has substantive restrictions as it rules out staples in empirical

1I would like to thank anonymous referees for helpful comments. Thanks are due to seminar participants
at the The Bank of Estonia, the 9th Nordic Econometric Meeting (Tartu), the Institute of Mathematics
and Statistics (University of Tartu), and the Inaugural Baltic Economic Conference (Vilnius) for the same.
I would especially like to thank Soham Sahoo for helping me with the data. All remaining errors are mine.
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work such as including separate year effects, which can be estimated very precisely given
a large cross section.”

There is another class of models that acknowledges the fact that many nonlinear panel
data models are not point identified at fixed T and consequently discuss set identification
(bound analysis) for certain quantiles of interest such as the marginal effects. These pa-
pers show that the bounds become tighter as the number of time periods, T , increases.
However, the methods in most of these papers are still limited to discrete covariates.
Moreover, these papers and papers utilizing FE approach assume that conditional on un-
observed heterogeneity all covariates are exogenous or predetermined; this, as argued in
Hoderlein and White (2012) (henceforth HW), may not always hold true.

In this paper, we relax the assumption of conditional exogeneity to allow for endogenous
covariates that are continuous, and develop a control function method to identify and
estimate structural measures of interest such as the Average Structural Function (ASF)
and APE while accounting for endogeneity and heterogeneity in a triangular system.

Some of the papers that adopt the control function approach to study binary or fractional
response outcomes are Blundell and Powell (2004) (BP), Papke and Wooldridge (2008)
(PW) and Rothe (2009). A partial list of papers that study nonparametric control func-
tion estimation of nonseparable, including binary response, models are Altonji and Matzkin
(2005) (AM), Florens et al. (2008), Imbens and Newey (2009), HW, and Torgovitsky (2015),
where the focus is on estimating heterogeneous effect of endogenous treatment. Apart from
PW, who specify the correlation between individual specific random effects and the exoge-
nous variables, in these papers the exogenous covariates are assumed to be independent of
unobserved heterogeneity.

Typically, in a simultaneous triangular system, unobserved heterogeneity in the reduced
form equations (Florens et al. term the reduced form equations as “treatment choice equa-
tions”) is assumed to be scalar, where the identifying assumption is that conditional on
these scalar time-varying heterogeneity/errors or its CDF, which are identified, all covari-
ates are independent of the heterogeneity in the structural equation. However, we know
that economic models suggest heterogeneity in tastes, technologies, abilities, etc. that are
unobserved. Also, some of these unobserved heterogeneity might as well be multidimen-
sional. Kasy (2011) shows that for the existing control function methods, identification
fails when the reduced form equations have multiple sources of the heterogeneity.

The exceptions are PW and HW, who consider panel data where heterogeneity, con-
stituting of time invariant random effects and idiosyncratic errors, is multidimensional.
While the imposed structures in PW’s is similar to ours, they make the traditional control
function assumption, and so their control function is scalar, whereas our control function
is vector valued, whose dimension depend on the dimension of unobserved heterogeneity.
And HW’s specification of the triangular system does not nest ours.

We allow for multidimensional heterogeneity in form of separable error components com-
prising of time invariant correlated random effects (or random coefficients) and idiosyn-
cratic terms, and assume that conditional on various error components of the reduced form
equations the covariates are independent of the heterogeneities in the structural equation.
But the various error components of the reduced form equations are not identified sepa-
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rately for them to be used as control functions.
However, the expected values of the error components of the reduced form equations

conditional on the endogenous variables, Xi ≡ (xxxi1, . . . ,xxxiT ), and the exogenous variables,
Zi ≡ (zzzi1, . . . , zzziT ), are straightforwardly identified when the distributions of the error
components are specified. Under our assumptions, this aids in identifying the measures of
interest. We then propose that these conditional expected values of the error components
of the reduced form equations be used as control functions, and argue that for triangular
systems with setups similar to ours, these control functions imply a weaker restriction than
the commonly made control function assumptions.

Our method, while being simple, makes a number of contributions to the literature. First,
we allow for multiple sources of heterogeneity, albeit with restrictions, in the triangular
system, where most papers, adopting the control function approach to handle endogeneity,
do not.

Secondly, our method allows for instruments with small support, that is, instruments that
are binary, discrete, or continuous, when point-identifying the ASF or the APEs. The two
exceptions in the control function literature that we know of where point-identification
in nonseparable triangular system is achieved when instruments have small support are
D’Haultfœuille and Février (2015) and Torgovitsky. In our paper, we exploit separability
of errors and panel data with repeated observations of the same unit for the purpose of
identification when instruments have small support. Finally, our model retains the attrac-
tive features of PW’s, where no assumptions are made on the serial dependence among the
outcome variable.

Using data on India, the proposed estimator is employed to estimate causal effects of
household income and wealth on the incidence of child labor. We find a strong effect of
correcting for endogeneity, and show that the standard parametric models give a misleading
picture of the causal effect of income and wealth on child labor.

The rest of the paper is organized as follows. In section 2 we introduce the model and dis-
cuss identification and estimation of structural measures of interests for a discrete response
model in a triangular system with random effects. In section 3 we discuss the results of
the Monte Carlo experiments, which have been conducted to compare our estimator with
some of the existing methods for panel data binary response model, where the imposed
structures are similar to ours. In section 4 we extend the model with random effects to
allow for random coefficients. In section 5 we apply the proposed estimator to study income
and wealth effects on work decision outcomes for children in the State of Andhra Pradesh
of India, and finally in section 6 we conclude. Some technical details are to be found in
the appendix. Due to space constraint, other technical details, which includes large sample
properties of the estimator, have been put in a supplementary appendix.

2. MODEL SPECIFICATION AND IDENTIFICATION AND ESTIMATION OF STRUCTURAL
MEASURES

Consider the following binary choice model in a triangular setup:

yit = 1{y∗it = (www′
it,xxx

′
it)ϕϕϕ+ θi + ζit > 0}, (2.1)
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where 1{.} is an indicator function that takes value 1 if the argument in the parenthesis
holds true and 0 otherwise. In (2.1), θi is the unobserved time invariant individual effect
and ζit is the idiosyncratic error component. The variables, xxxit, are endogenous in the sense
that ζit 6⊥ xxxit|θi; whereas most papers studying panel data binary choice model assume that
ζit ⊥ xxxit|θi. We assume that each of the endogenous variables are continuous and have a
large support. The dimension of xxxit is dx and the dimension of the exogenous variables,
wwwit, is dw.

The reduced form in the triangular system, which is estimated in the first stage, is a
system of dx linear equations,

xxxit = πzzzit +αααi + ǫǫǫit. (2.2)

In (2.2), π has a row dimension of dx,αααi ≡ (αi1, . . . , αidx)
′ is the (dx×1) vector of unobserved

random effects, ǫǫǫit ≡ (ǫit1, . . . , ǫitdx)
′ is the (dx× 1) vector of idiosyncratic error terms, and

zzzit ≡ (www′
it, z̃zz

′
it)

′ is of dimension dz. The dimension of the vector of instruments, z̃zzit, is greater
than or equal to the dimension of xxxit. Such exclusion restriction, where z̃zzit appears in the
reduced form but not in the structural, are justified on economic grounds.

Since the presence or absence of the set of exogenous variables, wwwit, has no bearing on the
identification results obtained in the paper, to ease notations we suppress it in the binary
response model in the rest of the paper. All assumptions and results are to be understood
as conditional on wwwit. Secondly, in the rest of the paper, except when needed, we will drop
the individual subscript, i.

While we refer (2.2) as reduced form equation, it is possible that the triangular system in
(2.1) and (2.2) is in fact fully simultaneous (see Blundell and Powell, 2004, for examples).
However, even if a simultaneous system is not triangular, the triangular representation, such
as the above, can be easily derived if the simultaneous equations involving y∗t and xxxt are
linear and the errors are additively separable. Also, the triangular model can be generalized
to allow for random coefficients instead of fixed coefficients. For the sake of exposition, we
limit the analysis to fixed coefficients with random effects; a straightforward extension of
the method to random coefficients is discussed in section 4.

We first define some notations: X ≡ (xxx1, . . . ,xxxT ) is a (dx × T ) matrix, Z ≡ (zzz1, . . . , zzzT )
is of dimension (dz × T ), ζζζ ≡ (ζ1, . . . , ζT )

′ a vector of idiosyncratic errors in the structural
equation, and ǫǫǫ ≡ (ǫǫǫ1, . . . , ǫǫǫT ) is a (dx × T ) matrix of idiosyncratic errors in the reduced
form equations. Our first assumption toward identifying the structural measures of interest
such as ASF and APE is:

AS 1 (a) ζζζ ⊥ Z, θ & ǫǫǫ ⊥ Z,ααα and (b) θ ⊥ Z|ααα.

In the above, while Z is independent of the idiosyncratic terms ζζζ and ǫǫǫ, it is potentially
correlated with the time invariant unobserved heterogeneities θ and ααα.

AS 2 (a)

θ, ζt|X,Z,ααα ∼ θ, ζt|ǫǫǫ, Z,ααα ∼ θ, ζt|ǫǫǫ,ααα where ǫǫǫ = X − E(X|Z,ααα).
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(b) θ, ζt⊥ǫǫǫ−t|ααα,ǫǫǫt,

In part (a) of AS 1, the assumption is that the dependence of the structural error terms
θ and ζt on X , Z, and ααα is completely characterized by the reduced form error components,
ǫǫǫ and ααα. The assumption in part (b), where only contemporaneous errors are correlated,
has been made to ease exposition, and can be dropped.

Assumptions AS 1 and AS 2 are weaker than the identifying assumptions in traditional
control function method, where both ααα and ǫǫǫ are assumed independent of Z and it is
assumed that ζt, θ ⊥ xxxt|υυυt = ααα+ ǫǫǫt; such an assumption implies that heterogeneity in each
of the dx reduced form equations is scalar.

For identification, one of the requirements of our method is that we be able to recover
the conditional distribution of ααα given X and Z. However, we do not know of any semi
or nonparametric estimator, and it is outside the scope of this paper to develop one,
where the distributions or expectations of random effects/coefficients conditional on X
and Z are estimated for a system of regressions. With parametric specification of the error
components, however, this conditional distribution is obtained straightforwardly.

Biørn (2004) proposed a step-wise maximum likelihood method for estimating the sys-
tems of regression equations, where the distributions of error components are specified. We
assume that the conditional distribution of ααα given Z and the marginal distribution of ǫǫǫt
are as follows:

AS 3

ααα|Z ∼ N
[

E(ααα|Z),Λαα

]

and ǫǫǫt ∼ N
[

0,Σǫǫ

]

,

where E(ααα|Z) = π̄z̄zz could be either Chamberlain’s or Mundlak’s specification for correlated
random effects.

Thus the tail, aaa = ααα− E(ααα|Z) = ααα− π̄z̄zz, is distributed normally with conditional mean
zero and variance Λαα. Given assumption AS 3, we can write the reduced form in (2.2) as

xxxt = πzzzt + π̄z̄zz + aaa + ǫǫǫt. (2.3)

When dx = 1, the assumption that aaa and ǫǫǫt are completely independent of Z can be
weakened to allow for non-spherical error components. Baltagi et al. (2010) deal with het-
eroscedasticity in aaa and serial correlation in the idiosyncratic components and Baltagi et al.
(2006) allow for heteroscedasticity in aaa and ǫǫǫt but no serial correlation in the idiosyncratic
component.

While we do derive control variables when the first-stage error components are non-
spherical and dx = 1, for the purpose of exposition, largely we will stick to assumptions
AS 3, and estimate the first-stage parameters, Θ1 = {π, π̄,Σǫǫ,Λαα}, of the reduced form
equations (2.3) by Biørn’s step-wise maximum likelihood method. In the supplementary
appendix, where we discuss large sample properties of the estimator, we briefly describe
Biørn’s methodology.
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2.1. Identification of Structural Measures

Given AS 2, we have E(θ + ζt|X,Z,ααα) = E(θ + ζt|ααα,ǫǫǫt) given by

E(θ|ααα,ǫǫǫt) + E(ζt|ααα,ǫǫǫt) = (ρρρθαααα + ρρρθǫǫǫǫt) + (ρρρζαααα + ρρρζǫǫǫǫt) = ρρραααα + ρρρǫǫǫǫt, (2.4)

where, for example, ρρρθα and ρρρθǫ respectively are vectors of population regression coefficients
of θ on ααα and ǫǫǫt. The two 1 × dx matrices, ρρρα and ρρρǫ, when estimated give us a test of
exogeneity of xxxt.

The above and AS 3 then imply that the conditional expectation of y∗t given X , Z, and
ααα is given by

E(y∗t |X,Z,ααα) = xxx′
tϕϕϕ+ ρρραααα + ρρρǫǫǫǫt (2.5)

= xxx′
tϕϕϕ+ ρρρα(π̄z̄zz + aaa) + ρρρǫǫǫǫt = E(y∗t |X,Z,aaa).

Let υυυt = ααα + ǫǫǫt be the composite errors of the reduced form equations. In our model,
the conditioning variables, ααα = π̄z̄zz + aaa and ǫǫǫt = υυυt −ααα = υυυt − (π̄z̄zz + aaa), are, however, not
identified because the aaa’s are unobserved. It would be possible to estimate the structural
parameters if we could integrate out aaa from E(y∗t |X,Z,aaa) in (2.5) with respect to its
conditional distribution, f(aaa|X,Z), and obtain

∫

E(y∗t |X,Z,aaa)f(aaa|X,Z)daaa

= xxx′
tϕϕϕ+ ρρραπ̄z̄zz + ρρρǫ(υυυt − π̄z̄zz) +

∫

(ρρραaaa− ρρρǫaaa)f(aaa|X,Z)daaa

= xxx′
tϕϕϕ+ ρρραπ̄z̄zz + ρρρǫ(υυυt − π̄z̄zz) + ρρραâaa− ρρρǫâaa

= xxx′
tϕϕϕ+ ρρραα̂αα + ρρρǫǫ̂ǫǫt = E(y∗t |X,Z) (2.6)

where, in the second equality, âaai = E(aaai|Xi, Zi). In the third equality, α̂ααi = π̄z̄zz + âaai =
E(αααi|Xi, Zi) and ǫ̂ǫǫit = υυυt − α̂ααi = E(ǫǫǫit|Xi, Zi).

In part (a) of Lemma 1 we show that1:

Lemma 1 If xxxt = πzzzt+ π̄z̄zz+aaa+ǫǫǫt, t ∈ {1, . . . , T}, where aaa and ǫǫǫt are normally distributed
with variances Λαα and Σǫǫ respectively, then

E(aaa|X,Z) = âaa(X,Z,Θ1) = Ω

T
∑

t=1

(υυυt − π̄z̄zz),

where Ω = [TΣ−1
ǫǫ + Λ−1

αα]
−1Σ−1

ǫǫ and υυυt = xxxt − πzzzt.

Proof of Lemma 1 Given in appendix A.

1In Lemma 1 we also derive the E(aaa|X,Z) when a and ǫt are both scalar, a is heteroscedastic, and the
distribution of ǫt is non-spherical.
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Since âaa(X,Z,Θ1) is a continuous function of Θ1, and since the first stage consistent

estimates, Θ̂1, converge almost surly to Θ1, ˆ̂aaa(Xi, Z, Θ̂1), the estimated value of âaa(X,Z,Θ1),
converges almost surely to âaa(X,Z,Θ1), hence

ρρρα ˆ̂ααα + ρρρǫˆ̂ǫǫǫt
a.s.→ ρρραα̂αα + ρρρǫǫ̂ǫǫt = E(θ + ζt|X,Z) and xxx′

tϕϕϕ+ ρρρα ˆ̂αααi + ρρρǫˆ̂ǫǫǫt
a.s.→ E(y∗t |X,Z),

where ˆ̂ααα and ˆ̂ǫǫǫt are the estimated values of α̂αα and ǫ̂ǫǫt respectively.

If the population parameters, Θ1, were known, we could write y∗t in error form as

y∗t = E(y∗t |X,Z) + ηt = X′
tΘ2 + ηt,

where Xt = (xxx′
t, α̂αα

′, ǫ̂ǫǫ′t)
′, Θ2 = (ϕϕϕ′, ρρρ′α, ρρρ

′
ǫ)

′, and ηt = θ+ ζt−E(θ+ ζt|X,Z) = θ+ ζt− (ρρραα̂αα+
ρρρǫǫ̂ǫǫt). Equation (2.1) then is written as

yt = 1{X′
tΘ2 + ηt > 0}. (2.7)

Since ǫ̂ǫǫt and α̂αα, both, are of dimension dx, the dimension of Xt is 3dx
2.

The identification conditions for Θ2 in (2.7) to be identified when ηt is assumed to follow
a known distribution (see Manski, 1988) are: (a) ηt be distributed independently of Xt and
(b) there exists no A ⊆ R3dx , Xt ∈ R3dx , such that A has probability 1 under PX, where
PX denotes the probability distribution of X, and A is a proper linear subspace of R3dx . In
Lemma 2 we show that condition (b) is satisfied.

Lemma 2 If (i) ∄ Ax ⊆ Rdx such that PrPx(Ax) = 1 under Px, where Ax is a proper
linear subspace of Rm; (ii) rank(Π) = dx, where Π =

(

π π̄
)

; (iii) ∄ Az ⊆ Rk, where
k = dim((zzz′t, z̄zz

′)′), such that PrPz(Az) = 1 under Pz, where Az is a proper linear subspace
of Rk; and (iv) if the covariance matrices of ǫǫǫt and ααα are of full rank, then ∄ an A ⊆ R3dx ,
such that A has probability 1 under PX and A is a proper linear subspace of R3dx.

Proof of Lemma 2 Given in appendix A.

Now, conditions (i) to (iii) in Lemma 2 are standard conditions for identification of ϕϕϕ
in the traditional control function methods, where ααα ⊥ Z and the control function is the
composite error, υυυt = ααα + ǫǫǫt = xxxt − πzzzt. Our conditioning variables – which, as we argue
in the next section, can be employed as control functions – however, are ǫ̂ǫǫt and α̂αα, and
are functions of Λαα and Σǫǫ . Positive definiteness of Λαα and Σǫǫ in condition (iv) helps
establish the statement of the Lemma to be true.

Since θ+ζt = E(θ+ζt|X,Z)+ηt = ρρραα̂αα+ρρρǫǫ̂ǫǫt+ηt, for a given xxxt we compute the average

2Note that we have suppressed wwwt in Xt, where wwwt is of dimension dw. So, in fact, the dimension of Xt

is 3dx + dw. Suppressing wwwt in Xt, however, results in no loss of generality.
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structural function (ASF) as

Eθ+ζ(1{xxx′
tϕϕϕ+ θ + ζt > 0}) = Eα̂αα,ǫ̂ǫǫ,η(1{xxx′

tϕϕϕ+ ρρραα̂αα+ ρρρǫǫ̂ǫǫt + ηt > 0})
= Eα̂αα,ǫ̂ǫǫ(Eη|α̂αα,ǫ̂ǫǫ(1{xxx′

tϕϕϕ+ ρρραα̂αα + ρρρǫǫ̂ǫǫt + ηt > 0}))
= Eα̂αα,ǫ̂ǫǫ(Eη(1{xxx′

tϕϕϕ+ ρρραα̂αα + ρρρǫǫ̂ǫǫt + ηt > 0}))

=

∫

Pr(yt = 1|xxxt, α̂αα, ǫ̂ǫǫt)dF (α̂αα, ǫ̂ǫǫ) = G(xxxt), (2.8)

where the second equality follows from the law of iterated expectations and the third
equality follows from the assumption that

AS 4 ηt = θ + ζt − E(θ + ζt|X,Z) is independent of X and Z3.

If ηt is distributed normally with variance σ2, we can obtain the average partial effect
(APE) of a variable, say w, as

∂G(xxxt)

∂w
=

∫

ϕw

σ
φ

(

xxx′
tϕϕϕ+ ρρραα̂αα + ρρρǫǫ̂ǫǫt

σ

)

dF (α̂αα, ǫ̂ǫǫ), (2.9)

where ϕw

σ
is the scaled coefficient of the variable, w, and φ(.) is the standard normal density

function.
Following Lemma 2, since the components of xxxt are continuous, with scale and location

normalization, Θ2 can be estimated by semiparametric methods without specifying the dis-
tribution of ηt (see Horowitz, 2009, for a review of identification results for semiparametric
binary choice models).

2.2. E(αααi|Xi, Zi) = α̂ααi and E(ǫǫǫit|Xi, Zi) = ǫ̂ǫǫit as Control Functions

Given that we were able to identify the ASF and APE when the structural model was
augmented with ǫ̂ǫǫt and α̂αα, we propose that ǫ̂ǫǫt and α̂αα be used as control functions. Since
ααα and ǫǫǫt are not identified separately, the traditional control function approach assumes
that the composite error, υυυt = ααα+ ǫǫǫt, is independent of Z and that conditional on υυυt, xxxt is
independent of θ + ζt

4. That is, the heterogeneity, υlt, where υl,t ∈ (υ1,t, . . . , υdx,t) ≡ υυυt, is
assumed to be scalar, whereas there could be multiple sources of heterogeneity.

3The assumption that the tail, U − E(U |W ), is independent of the conditioning variable, W , has been
made elsewhere such as in Chamberlain (1984) for the correlated random effects (CRE) probit model.

4 In HW’s model, 2 time periods are considered and ǫǫǫ1 and ǫǫǫ2−ǫǫǫ1 are the control functions. To identify
ǫǫǫt, HW consider the following triangular system:

yt = 1{y∗t = xxx′

tϕϕϕ+ααα+ ζt > 0}
xxxt = f0(zzzt) + f1(zzzt,ααα)ǫǫǫt,

where the individual specific unobserved heterogeneity, ααα, is common to all equations and ǫǫǫt ⊥ (zzzt,ααα).
They impose the normalizations: E(ǫǫǫt) = 0 and Var(ǫǫǫt) = 1. This permits them to solve for ǫǫǫt as ǫǫǫt =
Var(xxxt|zzzt)−1/2[xxxt−E(xxxt|zzzt)]. The estimates of ǫǫǫt are then obtained by estimating E(xxxt|zzzt) and Var(xxxt|zzzt).
Though HW identify structural quantities semiparametrically, these assumptions imply that their model
does not nest the model considered in this paper.
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We propose (ǫ̂ǫǫt, α̂αα) to be employed as control function because the condition, (ζt, θ) ⊥
xxxt |̂ǫǫǫt, α̂αα, for (ǫ̂ǫǫt, α̂αα) to qualify as control function is weaker than assuming υυυt = xxxt − πzzzt =
E(ααα+ ǫǫǫt|X,Z) as control function. This is because, given that ǫ̂ǫǫt = υυυt − α̂αα, there is one-to-
one mapping between (ǫ̂ǫǫt, α̂αα) and (υυυt, α̂αα), and therefore the conditioning σ-algebra, σ(ǫ̂ǫǫt, α̂αα),
is same as the σ-algebra, σ(υυυt, α̂αα). Hence, conditioning on ǫ̂ǫǫt and α̂αα is equivalent to condi-
tioning on υυυt and additional individual specific information as summarized by α̂αα. That is,
in assuming (ǫ̂ǫǫt, α̂αα) as control function one is assuming that no information about (ζt, θ) is
contained in xxxt over and above that contained in (ǫ̂ǫǫt, α̂αα), while the same may not be true
if one were to assume υυυt = α̂αα + ǫ̂ǫǫt as the only control function.

Assuming ǫ̂ǫǫt and α̂αα as control functions would be equivalent to assuming the following:

ACF 1 (a)

ζt, θ|X,Z, α̂αα ∼ ζt, θ|V, Z, α̂αα
∼ ζt, θ|V, α̂αα,

where V ≡ (υυυ1, . . . , υυυT ) = X − πZ and α̂αα = E(ααα|X,Z).
(b) ζt, θ ⊥ υυυ−t|υυυt, α̂αα.

In part (a), the assumption is that the dependence of (θ, ζt) on X and Z is completely
characterized by V and α̂αα. The assumption in part (b), which has been made for expositional
ease, can be dropped. Since ǫ̂ǫǫt = υυυt − α̂αα, there is one-to-one mapping between (ǫ̂ǫǫt, α̂αα) and
(υυυt, α̂αα), hence (ζt, θ)|(υυυt, α̂αα) ∼ (ζt, θ)|(ǫ̂ǫǫt, α̂αα). Also, AS 1 and assumptions needed to identify
(ǫ̂ǫǫt, α̂αα), too, would need to hold true.

Remark. When Z is independent of the heterogeneity terms, (ζt, θ) and (ααα,ǫǫǫt), as is
commonly assumed, then, given (ααα,ǫǫǫt), (ζt, θ) ⊥ zzzt|υυυt, where υυυt = ααα+ ǫǫǫt. Also, under such
independence, α̂αα = Ω

∑T
t=1(ααα+ǫǫǫt), too, is independent of Z, and we have (ζt, θ) ⊥ zzzt|υυυt, α̂αα.

With υυυt invertible in both xxxt and zzzt, there exists a one-to-one mapping between (xxxt, zzzt, α̂αα),
(xxxt, υυυt, α̂αα), and (zzzt, υυυt, α̂αα), which then also implies that (ζt, θ) ⊥ xxxt|υυυt, α̂αα.

However, when Z is not independent of θ and ααα, as is the case in our model, then
the condition, (ζt, θ) ⊥ zzzt|υυυt, does not hold in general for the traditional control function
method to be applicable. In ACF 1 what we are proposing is that conditional on V and
additionally on α̂αα, Z is independent of (ζt, θ). Now,

α̂αα = (I − TΩ)π̄z̄zz +Ω

T
∑

t=1

(ααα + ǫǫǫt) = π̄z̄zz +Ω

T
∑

t=1

(xxxt − πzzzt − π̄z̄zz),

a function ofX and Z, summarizes certain individual specific information. The assumption,
(ζt, θ) ⊥ Z|V, α̂αα, or equivalently (ζt, θ) ⊥ X|V, α̂αα, with α̂αα as an additional control function,
is related to the dependence assumptions in AM, Bester and Hansen (2009) (BH) and HW,
where the distribution of unobserved effects depends on the observed variables only through
certain function of the observed variables. These functions, as BH argue, may be viewed
as sufficient statistic. AM assume that (ζt, θ) is independent of X given certain summary
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statistics such as the mean, T−1
∑T

t=1 xxxt, or index functions of summary statistics, while in
BH these functions of observed variables are assumed to be unrestricted index functions. In
our case, the control function, (ǫ̂ǫǫt, α̂αα), is motivated by the result that under the restrictions
in AS 2 and (2.4), the mean of θ+ ζt given (Xi, Zi) depends on (Xi, Zi) through ǫ̂ǫǫt and α̂αα.

When ǫ̂ǫǫt and α̂αα are assumed as control functions, then one need not specify the condi-
tional distribution of θ + ζt given ǫ̂ǫǫt and α̂αα and estimate the coefficients, ϕϕϕ, and measures
like the ASF by semiparametric method discussed in BP, which is an extension of the
matching estimator of ϕϕϕ for the single-index model without endogeneity. Rothe develops
a semiparametric maximum likelihood (SML) method for binary response model to han-
dle endogeneity using control functions. These semiparametric methods, however, require
that the instruments, zzz = z̃zz, be continuous with large support. If the instruments are dis-
crete, the “rank condition” in BP and condition (ii) of Theorem 1 in Rothe5, necessary for
identification, are violated.

We do not pursue semiparametric estimation of binary choice models with the control
functions developed in this paper any further. Semiparametric estimation and the large
sample properties of the estimates are left for future research.

2.2.1. Identification of Average Structural Function and Average Partial Effects

If we assume α̂αα and ǫ̂ǫǫt as control functions, then

Pr(yt = 1|xxxt, α̂αα, ǫ̂ǫǫt) =

∫

1{−(ζt + θ) < xxx′
tϕϕϕ}dF (ζt + θ|xxxt, α̂αα, ǫ̂ǫǫt)

=

∫

1{−(ζt + θ) < xxx′
tϕϕϕ}dF (ζt + θ|α̂αα, ǫ̂ǫǫt)

= F (xxx′
tϕϕϕ; α̂αα, ǫ̂ǫǫt),

where F (xxx′
tϕϕϕ; α̂αα, ǫ̂ǫǫt) is the conditional CDF of ζt + θ given (α̂αα, ǫ̂ǫǫt) evaluated at xxx′

tϕϕϕ. The
second equality follows because ζt + θ ⊥ xxxt|α̂αα, ǫ̂ǫǫt.

If conditional on (α̂αα, ǫ̂ǫǫt), ζt + θ is assumed to be distributed normally with variance σ2

and conditional mean, the regression function, ρρραα̂αα + ρρρǫǫ̂ǫǫt, then

F (xxx′
tϕϕϕ; α̂αα, ǫ̂ǫǫt) = Φ

(

xxx′
tϕϕϕ+ ρρραα̂αα + ρρρǫǫ̂ǫǫt

σ

)

.

Given xxxt, averaging F (xxx′
tϕϕϕ; α̂αα, ǫ̂ǫǫt) over (α̂αα, ǫ̂ǫǫt), we get the ASF:

G(xxxt) =

∫

F (xxx′
tϕϕϕ; α̂αα, ǫ̂ǫǫt)dF (α̂αα, ǫ̂ǫǫ),

=

∫
[
∫

1{xxx′
tϕϕϕ + θ + ζt > 0}dF (θ + ζ |α̂αα, ǫ̂ǫǫ)

]

dF (α̂αα, ǫ̂ǫǫ)

= Eθ+ζ(1{xxx′
tϕϕϕ+ θ + ζt > 0}). (2.10)

5 Since conditioning on ǫ̂ǫǫt and α̂αα is equivalent to conditioning on υυυt = xxxt−πzzzt and α̂αα, and if identification
requires that conditional on the control variables, ǫ̂ǫǫt and α̂αα, – hence, υυυt and α̂αα – the vector xxxt contains
at least one, x1

t , continuously distributed component with nonzero coefficient, then it would be necessary
that zzzt contains a continuously distributed regressor.
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The APE of changing a variable, say w, from wt to wt +∆w can be obtained as

∆G(xxxt)

∆w
=

G(xxxt−w , (wt +∆w))−G(xxxt)

∆w
. (2.11)

To point-identify the ASF, G(x̄xx), it is required that E(yt|xxxt = x̄xx, α̂αα = ᾱαα, ǫ̂ǫǫt = ǭǫǫ) be eval-
uated at all values of (ᾱαα, ǭǫǫ) in the support of the unconditional distribution of (α̂αα, ǫ̂ǫǫ).
This requires that the support of the conditional distribution of (α̂αα, ǫ̂ǫǫ) conditional on
xxxt = x̄xx be equal to the support of the unconditional distribution (see Imbens and Newey;
Florens et al.; Blundell and Powell for a discussion). For many triangular systems that em-
ploy the control function, υυυit, or (F (x1,it|zzzit) . . . F (xdx,it|zzzit)), where F (x1,it|zzzit) is CDF of
x1,it given zzzit, the requirement of common support necessitates that the set of instruments,
zzzit, contains a continuous instrument with large support. In lemma 3 we show that:

Lemma 3 The support of the conditional distribution of α̂αα(X,Z,Θ1) and ǫ̂ǫǫt(X,Z,Θ1),
conditional on xxxt = x̄xx, is same as the support of their marginal distribution.

Proof of Lemma 3 Given in appendix A

In our approach, the control functions, ǫ̂ǫǫt and α̂αα, are smooth, unbounded functions of
xxxt’s, t ∈ {1, . . . , T}. Therefore, because the xxxs’s, s 6= t, are unrestricted and are continuous
with large supports, the ranges of α̂αα and ǫ̂ǫǫt = xxxt − πzzzt − α̂αα conditional on xxxt = x̄xx do not
depend on xxxt. Since the result does not rely on any kind of restriction on zzzt’s support,
our method circumvents the need to have a continuous instrument with large support to
identify the ASF. In the absence of continuous instruments with large support, this result
would also be useful for computing the ASF for the kind of triangular setups considered in
Blundell and Powell (2003), where the errors in the structural equation are nonadditive,
but additively separable in the reduced form.

2.3. Estimation Of Probit Conditional Mean Function

If ηt in (2.7) is assumed to follow a normal distribution, then

E(yt|X,Z) = Φ((X′
tΘ2)/σ),

where Xt = (xxx′
t, α̂αα

′(X,Z), ǫ̂ǫǫ′t(X,Z)), Θ2 = (ϕϕϕ′, ρρρ′α, ρρρ
′
ǫ)

′, and σ2 is the variance of ηt. Since
in probit models the coefficients can only be identified up to a scale, in this section with
a slight abuse of notation we denote the scaled parameters, 1

σ
Θ2, by Θ2. To estimate Θ2,

one can employ nonlinear least squares by pooling the data. However, as PW discuss, since
Var(yt|(X,Z)) will most likely be heteroscedastic and since there will be serial correlation
across time in the joint distribution, F (y0, . . . , yT |X,Z), the estimates, though consistent,
will be estimated inefficiently resulting in biased standard errors. PW argue that modelling
F (y0, . . . , yT |X,Z) and applying MLE methods, while possible, is not trivial. Moreover, if
the model for F (y0, . . . , yT |X,Z) is misspecified but E(yt|X,Z) is correctly specified, the
MLE will be inconsistent for Θ2 and the resulting APEs.
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To account for heteroscedasticity and serial dependence when all covariates are exoge-
nous, PW employ the method of multivariate weighted nonlinear least squares (MWNLS)
to obtain efficient estimates of Θ2. To get the correct estimates of the standard errors, the
method requires is a parametric model of Var(yi|Xi, Zi), where yi is the T × 1 vector of
responses. Similar to PW’s, we specify Var(yt|X,Z) as

Var(yt|X,Z) = τm(Xt,Θ2)(1−m(Xt,Θ2)), (2.12)

where m(Xt,Θ2) = Φ(X′
tΘ2) and 0 < τ ≤ 1. For covariances, Cov(yt, yr|X,Z), a “working”

version, which can be misspecified for Var(y|X,Z), is assumed. This, in the context of
panel data, is what underlies the method of generalized estimating equation (GEE), as
described in Liang and Zeger (1986). The main advantage of GEE lies in the consistent
and unbiased estimation of parameters’ standard errors even when the correlation structure
is misspecified. Also, GEE and MWNLS are asymptotically equivalent whenever they use
the same estimates of the T × T positive definite matrix, Var(y|X,Z).

Generally, the conditional correlations, Cov(yt, ys|X,Z), are a function of X and Z. In
the GEE literature, the “working correlation matrix” is that which assumes the dependency
structure to be invariant over all observations; that is, the correlations are not a function of
X and Z. Here we will focus on a particular correlation matrix that is suited for panel data
applications with small T . In the GEE literature it is called an “exchangeable” correlation
pattern. Exchangeable correlation assumes constant time dependency, so that all the off-
diagonal elements of the correlation matrix are equal. Though other correlation patterns
such as “autoregressive”, which assumes the correlations to be an exponential function of
the time lag, or “stationary M”, which assumes constant correlations within equal time
intervals could also be assumed.

GEEmethod suggests that parameter, ρ, that characterize Var(y|X,Z) = V(X,Z,Θ2, τ, ρ)
can be estimated using simple functions of residuals, ut,

ut = yt − E(yt|X,Z) = yt −m(Xt,Θ2),

where the mean function , E(yt|X,Z), is correctly specified. With the variance defined in
(2.12), we can define standardized errors as

et =
ut

m(Xt,Θ2)(1−m(Xt,Θ2))
.

Then we have Var(et|X,Z) = τ . The exchangeability assumption is that the pairwise
correlations between pairs of standardized errors are constant, say ρ. This, to reiterate, is a
“working” assumption that leads to an estimated variance matrix to be used in MWNLS.
Neither consistency of the estimator of ρ, nor valid inference, will rest on exchangeability
being true.

To estimate a common correlation parameter, let Θ̃2 be a preliminary, consistent estima-
tor of Θ2. Θ̃2 could be the pooled ML estimate of the heteroscedastic probit model. Define
the residuals, ũt, as ũt = yt −m(Xt, Θ̃2) and the standardized residuals as

ẽt =
ũt

m(Xt, Θ̃2)(1−m(Xt, Θ̃2))
.
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Then a natural estimator of a common correlation coefficient is

ρ̃ =
1

NT (T − 1)

N
∑

i=1

T
∑

t=1

∑

s 6=t

ẽitẽis. (2.13)

Under standard regularity conditions, without any substantive restrictions on Corr(et, es|X,Z),
the plim of ρ̃ is

plim(ρ̃) =
1

[T (T − 1)]

T
∑

t=1

∑

s 6=t

E(eiteis) ≡ ρ∗

If Corr(et, es|X,Z) happens to be the same for all t 6= s, then ρ̃ consistently estimates
this constant correlation. Generally, it consistently estimates the average of these correla-
tions across all (t, s) pairs, which is defined as C(ρ̃). Given the estimated T × T working
correlation matrix, C(ρ̃), which has unity down its diagonal and ρ̃ everywhere else, we can
construct the estimated working variance matrix:

V(X,Z, Θ̃2, ρ̃) = D(X,Z, Θ̃2)
1/2C(ρ̃)D(X,Z, Θ̃2)

1/2 = V(X,Z, Υ̃)

where D(X,Z,Θ2) is the T × T diagonal matrix with m(Xt,Θ2)(1−m(Xt,Θ2)) down its
diagonal. (Note that dropping the variance scale factor, τ , has no effect on estimation or
inference.)

Estimation by MWNLS then involves solving for Θ̂2 by minimizing the following with
respect to Θ2:

min
Θ2

N
∑

i=1

[yi −mi(Xi, Zi,Θ2)]
′[V(Xi, Zi, Υ̃)]−1[yi −mi(Xi, Zi,Θ2)], (2.14)

where mi(Xi, Zi,Θ2) is the T vector with tth element m(Xit,Θ2).
The requirement of GEE is that the mean model, E(yt|X,Z), be correctly specified,

else the GEE approach to estimation can give inconsistent results. We have, given our
identifying assumptions, shown that E(yt|X,Z) = Φ(X′

tΘ2), and therefore we can employ
GEE to account for serial correlation across time. Once the control functions have been
estimated, one can then use the STATA command,“xtgee,” which fits generalized linear
models and allows one to specify the within-group correlation structure for the panels, to
estimate Θ2.

Once we have the consistent estimates, Θ̂2, of Θ2, the sample analog of the APE of a
variable, say w, ∂G(xxxt)

∂w
for any fixed xxxt = x̄xx can be computed as

∂̂G(xxxt)

∂w
=

1

NT

N
∑

i=1

T
∑

t=1

ϕ̂wφ(x̄xx
′ϕ̂ϕϕ+ ρ̂α ˆ̂αααi + ρ̂ǫˆ̂ǫǫǫit). (2.15)

Since

ϕ̂wφ(x̄xx
′ϕ̂ϕϕ+ ρ̂α ˆ̂αααi + ρ̂ǫˆ̂ǫǫǫit)

a.s.→ ϕwφ(x̄xx
′ϕϕϕ+ ρρραα̂ααi + ρρρǫǫ̂ǫǫit),
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by the weak LLN ∂̂G(xxxt)
∂w

converges in probability to ∂G(xxxt)
∂w

as NT → ∞. The APE of
an exogenous dummy variable, w, can be computed by taking the difference in sample

analogue of the ASF, Ĝ(xxxt), computed at (0, x̄xx′
−w)

′ and (1, x̄xx′
−w)

′.
In appendix A of the supplementary appendix we derive the asymptotic covariance ma-

trix of the second-stage coefficient estimates and the standard errors of the APEs when
the first stage estimation involves estimating a system of regression using the method in
Biørn (2004). However, firstly, because the expressions needed to compute the covariance
matrices might be computationally involved, and secondly, because new expressions for the
covariance matrix of the second-stage coefficient estimates will have to be derived when a
different estimator for the first stage reduced form is employed, we suggest that bootstrap-
ping procedure be employed to approximate the variance of the estimated coefficient6.

3. MONTE CARLO EXPERIMENTS

In this section, we discuss results of Monte Carlo (MC) experiments, which we conduct to
analyze the finite sample behaviour of our model with one endogenous variable, x. We also
compare the performance of our estimator to the performances of alternative estimators
with setups similar to ours. More specifically, we compare the estimates of APE of x from
ours and alternative estimators to the true measure of the APE.

We consider the following data generating process (DGP):

yit = 1{ϕxit + θi + ζit > 0} and 0 otherwise, where (3.1)

xit = πzit + αi + ǫit, i = 1, . . . , n, t = 1, . . . , 5, (3.2)

and where zit is the instrument. We assume that ϕ = −1 and that π = 1.5. We allow
the individual specific effects αi and θi to be correlated with the vector of instruments,
Zi = (zi1, . . . , zi5)

′. The variables, Zi, αi, and θi, are drawn from the following distribution:
(Z ′

i, αi, θi)
′ ∼ N

[

0,Σzαθ

]

, where

Σzαθ =

































σ2
z 0 0 0 0
0 σ2

z 0 0 0
0 0 σ2
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0 0 0 σ2
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0 0 0 0 σ2
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ρzθσzσθ ρzθσzσθ ρzθσzσθ ρzθσzσθ ρzθσzσθ

] [

σ2
α ραθσθσα

ραθσθσα σ2
θ

]





















,

where σz = 5, σα = 3, σθ = 4, ρzα = 0.4, ρzθ = 0.2, and ραθ = 0.5. The above choice of
correlation coefficients ensures that, conditional on αi, the conditional correlation between
zit and θi, ρzθ|α = ρzθ − ρzαραθ = 0, which, in this case, also implies that conditional on αi,
θi ⊥ Zi|αi.

6STATA’s command, xtgee, for generalized estimating equations has the option for bootstrap estimation
of the standard errors, where one can define cluster variables for identifying panels.
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Also, (ζit, ǫit) is assumed independent of (Z ′
i, αi, θi)

′, and is drawn from (ζit, ǫit) ∼
N
[

0,Σζǫ

]

, where

Σζǫ =

[

σ2
ζ ρζǫσζσǫ

ρζǫσζσǫ σ2
ǫ

]

=

[

1 .75
.75 1

]

.

From this DGP we generate (Z ′
i, αi, θi)

′ and (ζit, ǫit) of varying size, n, with t fixed at
t = 5. When generating (Z ′

i, αi, θi)
′, we first generate n number of αi’s, and then given αi,

we generate θi and Zi = (zi1, . . . , zi5)
′. We then discretized zit to take value 1 if zit > 0 and

0 otherwise. Having generated (Z ′
i, αi, θi)

′ and (ζit, ǫit), we generate xit according to (3.2)
and then yit according to (3.1).

Our DGP assumptions, θi ⊥ Zi|αi and (Z ′
i, αi, θi)

′ ⊥ (ζit, ǫit), which are in line with AS
1, together satisfy AS 27, which in turn implies that θi + ζit ⊥ xit|αi, ǫit. This then implies
that we can write (3.1) as

yit = 1{ϕxit + ρααi + ρǫǫit + η̃ > 0}, (3.3)

where, given the parameter values of the DGP, ρα = ρθα
σθ

σα
= 0.6667, ρǫ = ρζǫ

σζ

σǫ
= 0.75,

and σ̃2, the variance of η̃, is σ̃2 = (1− ρ2θα)σ
2
θ + (1− ρ2ζǫ)σ

2
ζ = 12.4375.

In practice, since αi and ǫit are unobserved and cannot be identified, we cannot estimate
(3.3) as a probit model to obtain Pr(yit = 1|xit, αi, ǫit) and the scaled coefficient, ϕ/σ̃.
Given this, we in section 2 developed a two-step method to consistently estimate the ASF
and APE. We showed that by estimating

yit = 1{ϕxit + ραα̂i + ρǫǫ̂it + ηit > 0} (3.4)

as a probit model we can obtain estimates of the scaled parameter ϕ/σ, where σ2 is the
variance of ηit, which is independent ofXi and Zi, and where ραα̂i+ρǫǫ̂it = E(θi+ζit|Xi, Zi).

Having generated the data, the control variables, α̂i and ǫ̂it, are constructed (see section
2.1) from the first-step estimates of the following modified reduced form equation:

xit = πzit + π̄z̄i + ai + ǫit, (3.5)

where π̄z̄i + ai is equal to αi of reduced form equation (3.2), where π̄z̄i = π̄T−1
∑T

i=1 zit
is the assumed specification for E(αi|Zi) and ai is the residual individual effect. Equation
(3.5) is estimated as a panel data random effect model by the method of MLE.

But σ̃2, the variance of η̃it in (3.3), is not the same as σ2, the variance of ηit in (3.4).
Therefore, ϕ/σ̃ is not equal to ϕ/σ, where the estimate of the latter is obtained by esti-
mating (3.4) as a probit model. While, given the specified DGP, it could be possible to
compute the value of σ and compare the estimates of ϕ/σ to its true value, computing the
value of σ could be tedious.

7Given the DGP assumptions, it can be verified that ζit ⊥ Zi|αi, ǫit, θi and θi ⊥ Zi|αi, ǫit. The two
together imply that θi, ζit ⊥ Zi|αi, ǫit.
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However,

∫

Pr(yit = 1|xit, αi, ǫit)dF (α, ǫ) =

∫

Pr(yit = 1|xit, α̂i, ǫ̂it)dF (α̂, ǫ̂), (3.6)

where the measure on the RHS, whether one follows the method outlined in section 2.1 or
assume (α̂i, ǫ̂it) as control function, was shown equal to Eθ+ζ(1{xitϕ + θi + ζit > 0}) (see
equations (2.8) and (2.10)), and was referred to as the ASF evaluated at xit. The equality
in (3.6) holds because the LHS in (3.6) too is Eθ+ζ(1{xitϕ+ θi + ζit > 0})8.

Since η̃it in (3.3) and ηit in (3.4) are normally distributed, differentiating throughout
with respect to x in (3.6) we get

∫

ϕ

σ̃
φ

(

ϕxit + ρααi + ρǫǫit
σ̃

)

dF (α, ǫ) =

∫

ϕ

σ
φ

(

ϕxit + ραα̂i + ρǫǫ̂it
σ

)

dF (α̂, ǫ̂),

(3.7)

where the measure on the RHS in section 2.1 was referred to as APE of x at xit.

For notational convenience, in this section, we will denote the true ASF,
∫

Pr(yit =

1|xit, αi, ǫit)dF (α, ǫ), by G(xit), and the true APE, the APE on the LHS of (3.7), by ∂G(xit)
∂x

.
Estimates of APE, for example the estimate of RHS in (3.7), from any of the model

considered in this section will be denoted by ∂̂G(xit)
∂x

.

Now, while in practice the heterogeneity terms, (θi, ζit) and (αi, ǫit), are unobserved, in
MC experiments we do know what these values are. We could therefore compute the true
measure of APE, ∂G(xit)

∂x
, by averaging (ϕ/σ̃)φ((ϕxit + ρααi + ρǫǫit)/σ̃) over αi and ǫit. At

xit = 1, given the parameter values, it turns out that ∂G(xit)
∂x

= −.093969.

One of the alternative estimators, which has its setup similar to ours is the method
proposed by PW. To address the issue of endogeneity, PW also propose a two-step control
function method. In their model, they specify the conditional distribution of θi given Xi

and the conditional distribution of αi given Zi. They assume that θi = π̄θx̄i + τi and
αi = π̄αz̄i + ai, where π̄θx̄i is the specification for E(θi|Xi) and π̄αz̄i is the specification for
E(αi|Zi). Given the assumptions, they write the triangular system in (3.1) and (3.2) as

yit = 1{ϕxit + π̄θx̄i + τi + ζit > 0} (3.8)

xit = πzit + π̄αz̄i + υPWit, (3.9)

8Now

∫

Pr(yit = 1|xit, αi, ǫit)dF (α, ǫ) =

∫ [ ∫

1{xitϕ+ θi + ζit > 0}dF (θ + ζ|α, ǫ)
]

dF (α, ǫ)

= Eθ+ζ(1{xitϕ+ θi + ζit > 0}).

9While the value of ∂G(xit)
∂x could be computed analytically, we compute its value numerically for every

MC replication. Its value differs from −.09396 only at the 6th decimal place as we vary the sample size.
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where υPWit = ai + ǫit. They then make the control function assumption that τi + ζit ⊥
xit|υPWit. This allows them to estimate the APE as

∫

ϕ

σPW
φ

(

ϕxit + π̄θx̄i + ρυPWit

σPW

)

dF (π̄θx̄, υPW ),

where ρ is population regression coefficient of τi+ζit on υPWit, and where υPWit is obtained
as residuals after estimating (3.9) in the first stage. The conditional distribution of τi + ζit
given υPWit is assumed to follow a normal distribution with variance σ2

PW . If their method
gives consistent estimates of APE, then it must be that the above measure is equal to
G(xit)
∂x

.
In Chamberlain’s correlated random effects (CRE) probit and in Chamberlain’s condi-

tional logit (CL), xit is assumed to be independent of the idiosyncratic term, ζit. While
in CRE probit model E(θi|Xi) is specified, in the CL model the distribution of θi is left
unspecified. Assuming that θi = π̄θx̄i + τi, where π̄θx̄i is the specification for E(θi|Xi), the
structural equation for the CRE probit model is given by

yit = 1{ϕxit + π̄θx̄i + τi + ζit > 0}, where τi = θi − E(θi|Xi).

τi + ζit is assumed independent of Xi and is distributed normally with variance σ2
CRE . The

CRE probit model is estimated as a probit model by pooling the data. If the CRE probit
model too gives consistent measure of APE then it has to be that

∫

ϕ

σCRE
φ

(

ϕxit + π̄θx̄i

σCRE

)

dF (π̄θx̄) =
∂G(xit)

∂x
,

where the LHS is the measure of APE of x pertaining to the CRE probit model.
The structural equation for the CL model is same as equation (3.1), where ζit follows a

logistic distribution. The APE of x at xit for the CL model is
∫

ϕΛ(xit, θi)(1− Λ(xit, θi))dF (θ),

where Λ(xit, θi) = Pr(yit = 1|xit, θi) =
exp(ϕxit+θi)

1+exp(ϕxit+θi)
. Once we have estimated ϕ by estimat-

ing the CL model, we can estimate the APE by averaging ϕΛ(xit, θi)(1−Λ(xit, θi)) over θi.
Again, while in practice θi is unobservable, in MC experiments we know what these values
are.

Table 1 provides the results for various sample size, n, with m = 10000 Monte Carlo
replications. In the Table and in Figure 1 we compare the performance of our method,
which we call EAP method10, to the alternative estimators considered above.

In Figure 1 we plot the density of m = 10000 MC estimates of ∂̂G(xit)/∂x−∂G(xit)/∂x
obtained for the four estimation methods for different sample sizes. It can be seen from

10We call it so because, as can be seen in Appendix 1, our conditioning variables to account for en-
dogeneity are based on E(ααα|X,Z), which is computed as “expected a posteriori” (EAP) value of ααα, and
where the required distributions to compute it are obtained from the first stage estimates.
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the figure that as the sample size increases, the variance of ̂∂G(xit)/∂x − ∂G(xit)/∂x
for each of the method decreases. However, the figure also shows that for each of the
alternative estimators, the APE of x is estimated with a bias, which persists as the sample

size grows larger. Thus, even as the variance of ∂̂G(xit)/∂x − ∂G(xit)/∂x for each of the
alternative methods decreases, as can be seen from Table 1, the RMSE for alternative
methods decreases quite slowly.

[ Table 1 about here ]
[ Figure 1 about here ]

Between the alternative estimators, the conditional logit model performs better than the
CRE probit model and the control function method proposed by PW. HW too compare
their estimator to the CL model by MC experiments. However, in their MC experiments,
xit is not correlated with transitory errors, ζit, whereas in our DGP the two are. Therefore
in our experiments we find that the APE of x from the CL model is estimated with a bias.
Even when the transitory error distribution is misspecified, the least bias of the estimates
from the CL model among the alternative estimators could be because the correlation
between xit and θi is left unspecified. The misspecification of transitory error distribution,
however, as HW argue, should not have a major effect as the logistic distribution is also a
unimodal symmetric error distribution like the true error, which is normally distributed.
But it has the largest variance, which could be because the CL model does not use all
observations: those individuals for whom

∑5
t=1 yit = 0 or

∑5
t=1 yit = 5 are dropped.

Since the CL and CRE probit models do not account for the correlation between xit and
the transitory errors, ζit, the methods can give biased results. Unexpectedly, however, the
method proposed by PW, which tries to accounts for the correlation of xit with both θi and
ζit, gives the least satisfactory results. This suggests that the assumptions of their model
including the control function assumption, τi + ζit ⊥ xit|υPWit, may be too restrictive and
are likely to be violated. Besides, in PW’s model the APE’s are not point identified when
the instrument, zit, is binary and υPWit the control function.

The results therefore imply that the additional assumption, AS 4, in section 2.1 or
assuming (ǫ̂ǫǫit, α̂ααi) as control function, which allowed us to identity the ASF and APE, may
not be restrictive, and that the developed method can yield consistent result.

To conclude, this finite sample study establishes the following:
(1) Our method performs well with sample sizes frequently encountered in practice.
(2) It performs better than the alternative estimators with setups similar to ours.

4. PANEL PROBIT MODEL WITH RANDOM COEFFICIENTS IN A TRIANGULAR SYSTEM

In this section we extend the model with random effect studied in section 2 to allow for
random coefficients, and discuss identification of certain structural measures of interest.
Consider the following binary choice random coefficient model

yit = 1{y∗it = X ′
itϕϕϕi + ζit > 0}, (4.1)

where Xit = (xit,www
′
it)

′ and ζit are the idiosyncratic errors. Here we consider a single con-
tinuous endogenous variable, xit, with a large support. Let dw be the dimension of the
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exogenous variables, wwwit. In (4.1), the random coefficients are ϕϕϕi = ϕϕϕ + θθθi, where ϕϕϕ is a
(1 + dw)× 1 vector of constant means and E(θθθi) = 0. Thus, ϕϕϕ is the average slope that we
might be interested in.

The reduced form in the triangular system is given by:

xit = zzz′itαααi + ǫit, (4.2)

where zzzit = (www′
it, z̃zz

′
it)

′. The dimension of the vector of instruments, z̃zzit, dz, is greater than
or equal to 1. αααi = ααα + aaai is the (dw + dz) × 1 vector of random coefficients, where ααα is
a vector of constants and aaai a vector of stationary random variables with zero means and
constant variance-covariances. And finally, ǫit is a scalar idiosyncratic term.

The identifying distributional restrictions are summarized as follows:

RC 1 (a) (θθθi, ζζζ i), (aaai, ǫǫǫi) ⊥ Zi and (b) θθθi, aaai ⊥ ζζζ i, ǫǫǫi, where Zi ≡ (zzzi1, . . . , zzziT ) is a T ×
(dw + dz) matrix, ζζζ i ≡ (ζi1, . . . , ζiT )

′ , and ǫǫǫi ≡ (ǫi1, . . . , ǫiT )
′.

In the above assumption, zzzit is independent of the random coefficients, (ϕϕϕi,αααi), and the
idiosyncratic errors, (ζit, ǫit). Also, as in the random effects model, we assume that the
random coefficients and the idiosyncratic errors are independent of each other.

RC 2

θθθi, ζit|Xi, Zi, aaai ∼ θθθi, ζit|Xi − E(Xi|Zi, aaai), Zi, aaai

∼ θθθi, ζit|ǫǫǫi, Zi, aaai

∼ θθθi, ζit|ǫǫǫi, aaai,

where Xi ≡ (xi1, . . . , xiT )
′ and ǫǫǫi = Xi − E(Xi|Zi, aaai) = Xi − Zi(ααα + aaai).

In RC 2 the assumption is that the dependence of the structural error terms θθθi and ζit
on Xi, Zi, and aaai is completely characterized by the reduced form error components, ǫǫǫi and
aaai. If given (ǫit, aaai) only contemporaneous correlations matter, then θθθi, ζit ⊥ ǫǫǫi,−t|(ǫit, aaai).

As in the model for random effects, we specify the marginal distributions of aaai and ǫit.
We assume that

RC 3 aaai ∼ N(0,Σa) and that ǫit ∼ N(0, σ2
ǫ ).

Let Θ1 ≡ {ααα,Σa, σ
2
ǫ} denote the set of parameters of random coefficient model in (4.2),

the reduced form equation. The random coefficient model is a standard one, and most
statistical packages have routines to estimate Θ1.

Given assumption RC 2, we have

E(θθθi|Xi, Zi, aaai) = E(θθθi|aaai, ǫǫǫi) = E(θθθi|aaai) = ρρρθaaaai and

E(ζit|Xi, Zi, aaai) = E(ζit|aaai, ǫǫǫi) = E(ζit|ǫǫǫi) = ρρρζǫǫǫǫi, (4.3)
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where the second equality in each of the above follows from part (b) of assumption RC 1.
In the above, ρρρθa is the (dw + 1)× (dw + dz) matrix of population regression coefficients of
θθθi on aaai, and ρρρζǫ is the population regression coefficient of ζit on ǫǫǫi.

Our assumptions and (4.3) then imply that the conditional expectation of y∗it given Xi,
Zi, and aaai is given by

E(y∗it|Xi, Zi, aaai) = X ′
itϕϕϕ+ X ′

itρρρθaaaai + ρρρζǫǫǫǫi.

Because the stochastic part, aaai, of the random coefficients in the reduced form equation
are unobserved, the conditioning variable, ǫǫǫi = Xi − Zi(ααα + aaai), too, is not identified. To
estimate the structural parameters, as in the model with random effects, we first integrate
out aaai from E(y∗it|Xi, Zi, aaai) with respect to its conditional distribution, f(aaai|Xi, Zi), to
obtain

E(y∗t |Xi, Zi) =

∫

E(y∗it|Xi, Zi, aaai)f(aaai|Xi, Zi)daaai

= X ′
itϕϕϕ+ X ′

itρρρθaâaai + ρρρζǫǫ̂ǫǫi, (4.4)

where âaai = E(aaai|Xi, Zi) and ǫ̂ǫǫi = Xi − Zi(ααα+ âaai). In part (c) of Lemma 1 in the appendix
we show that

Lemma 1 (c) If xit = zzz′itααα + zzz′itaaai + ǫit, where aaai ∼ N(0,Σa) and ǫit ∼ N(0, σ2
ǫ ), then

E(aaai|Xi, Zi) = âaai(Xi, Zi,Θ1) = [

T
∑

t=1

zzzitzzz
′
it + σ2

ǫΣ
−1
a ]−1

( T
∑

t=1

zzzit(xit − zzz′itααα)

)

.

From (4.3) and (4.4), it therefore follows that

E(ϕϕϕi|Xi, Zi) = E(ϕϕϕ+ θθθi|Xi, Zi) = ϕϕϕ+ ρρρθaâaai and E(ζit|Xi, Zi) = ρρρζǫǫ̂ǫǫi. (4.5)

Writing ϕϕϕi and ζit in error form as ϕϕϕi = ϕϕϕ+ ρρρθaâaai + θ̃θθi and ζit = ρρρζǫǫ̂ǫǫi + ζ̃it respectively, we
can write the structural equation (4.1) as

yit = 1{y∗it = X ′
itϕϕϕ+ X ′

itρρρθaâaai + ρρρζǫǫ̂ǫǫi + X ′
itθ̃θθi + ζ̃it > 0}. (4.6)

When θ̃θθi and ζ̃it are independent of Xi and Zi, and distributed normally with mean zero
and variances Σθ and 1 respectively, then the parameters, Θ2 ≡ {ϕϕϕ,ρρρθa, ρρρζǫ,Σθ}, of the
above model can be estimated by integrated maximum likelihood method, where one can in-
tegrate out θ̃θθi using numerical multidimensional integration (see Heiss and Winschel, 2008).
Alternatively, maximum simulated likelihood or Markov Chain Monte Carlo (MCMC)
methods as discussed in Greene (2004), too, can be used to obtain Θ2.

Once Θ2 is estimated, the following measures of interest can be obtained. (A) The
expected value, E(ϕϕϕi|Xi, Zi) = ϕϕϕ+ρρρθaâaai. (B) The Average Partial Effect (APE) of changing
a variable, say w, in time period t from wit to wit +∆w can be obtained as

∆G(Xit)

∆w
=

G(Xit−w , (wt +∆w))−G(Xit)

∆w
, where
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G(Xit) =

∫

Φ

(X ′
itϕϕϕ+ X ′

itρρρθaâaai + ρρρζǫǫ̂ǫǫi
1 + X ′

itΣθXit

)

dF (âaa, ǫ̂).

Since we were able to identify the average slopes coefficients and the APEs when we
augmented the structural equation with âaa′i ⊗ X ′

it and ǫ̂ǫǫi, as in the random effects case, we
propose (ǫ̂ǫǫi, âaai) to be used as control function.

ACF 2

ζit, θθθi|Xi, Zi, âaai ∼ ζit, θθθi|̂ǫǫǫi, Zi, âaai

∼ ζit, θθθi|̂ǫǫǫi, âaai,

where ǫ̂ǫǫi ≡ (ǫ̂i1, . . . , ǫ̂iT )
′ = Xi − Zi(ααα+ âaai) and âaai = E(aaai|Xi, Zi).

In the above, ǫ̂ǫǫi(Xi, Zi) and âaai(Xi, Zi) are assumed to fully characterize the dependence
of Xi and Zi on the structural errors, ζit and θθθi, in (4.1). With ǫ̂ǫǫi and âaai as control functions
the semiparametric method in Hoderlein and Sherman (2015) can be employed to estimate
the mean of ϕϕϕi.

Kasy (2011) considers non-separable triangular systems for cross-sectional data to char-
acterizes systems for which control functions – control functions such as C(x, z) = x −
E(x|z) or C(x, z) = F (x|z), where F is the conditional cumulative distribution function of
x given z – exist. Kasy shows that when unobserved heterogeneity in first-stage reduced
form equations is multi-dimensional, such as the reduced form equations with random
coefficients, the errors in the structural equation are not independent of the endogenous
covariates, x, or the instruments, z, given C(x, z).

We consider panel data, where the random coefficient are time invariant, and our control
functions, ǫ̂ǫǫi and âaai, are different from those considered in Kasy. Since âaai, a function of
Xi and Zi, summarizes certain individual specific information, as argued in section 2.2,
the assumption in ACF 2 is that the dependence of (θθθi, ζit) on (Xi, Zi) can be reduced to
dependence of (θθθi, ζit) on (âaai, ǫ̂ǫǫi), which is akin to dependence assumption in papers such
as by AM and BH. The assumption is motivated by the result that under the restrictions
in RC 1, RC 2, and (4.3), the expectations of ζit and θθθi given (Xi, Zi) depend on (Xi, Zi)
through ǫ̂ǫǫi and âaai respectively.

5. IMPLICATIONS OF OWNERSHIP OF LAND AND FARM ASSETS ON CHILD LABOR

5.1. Introduction

Child labor is a pressing concern in all developing countries. According to International
Labour Office’s current (2016) estimates, 152 million children in the 5 to 17 years age group
are working in economic activities throughout the world; 62 million of which are in the
Asia-Pacific region. Conditions of child labor can vary. Many children work in hazardous
industries, risking accident and injury, and there are others working in conditions that
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take a toll on their health. Moreover, when children work, they forego educating them-
selves11, and, thus, human capital accumulation, with deleterious effect on their future
earning potential. Furthermore, since there is positive externality to human capital accu-
mulation, as argued by Baland and Robinson (2000) (henceforth BR), the social return to
such accumulation, too, is not realized.

There is a huge literature, both empirical and theoretical, that has sought to under-
stand the mechanism underlying child labor. What has emerged is that poverty (see
Basu and Van, 1998; Baland and Robinson, 2000), along with imperfection in labor and
land market (see Bhalotra and Heady, 2003; Dumas, 2007; Basu et al., 2010) and capital
market (see Baland and Robinson, 2000) to be the major causes of child labor. BR show
that child labor increases when endowments of parents are low, and that when capital
market imperfections exist and parents cannot borrow, child labor becomes inefficiently
high.

Basu et al. (2010) (BDD) point out that papers like Bhalotra and Heady (2003)(BHy)
and Dumas (2007) show that in some developing countries the amount of work the children
of a household do increases with the amount of land possessed by the household. Since land
is usually strongly correlated with a household’s income, this finding seems to challenge
the presumption that child labor involves the poorest households. They argue that these
perverse findings are a facet of labor and land market imperfections, and that in developing
countries, poor households in order to escape poverty want to send their children to work
but are unable to do so because they have no access to labor markets close to their home.
In such a situation, if the household comes to acquire some wealth, say land, its children,
if only to escape penury, will start working. However, if the household’s land ownership
continues to rise, then beyond a point the household will be well-off enough and it will not
want to make its children work.

BHy argue that on one hand there is the negative wealth effect of large landholding
on child labor, whereby large landholding generate higher income and, thereby, makes it
easier for the household to forgo the income that child labor would bring. On the other
there is the substitution effect, where due to labor market imperfections, owners of land
who are unable to productively hire labor on their farms have an incentive to employ
their children. Since the marginal product of child labor is increasing in farm size, this
incentive is stronger amongst larger landowners. The value of work experience will also
tend to increase in farm size if the child stands to inherit the family farm. Furthermore,
they argue that large landowners who cannot productively hire labor would want to sell
their land rather than employ their children on it, but, because of land market failure, are
unable to do so. Thus, land market failure reinforces labor market failure.

Cockburn and Dostie (2007) (CD) in their analysis of child labor in Ethiopia find that
in presence of labor market imperfections, all assets need not be child labor enhancing.
They find that certain productive assets that enable an increase in the total family income

11While school attendance may not be considered as the “inverse” of child labor, it can nevertheless be
argued that whatever promotes school attendance is likely to deter child labor (see Baland and Robinson,
2000). Moreover, empirically there is a negative correlation between child labor and hours dedicated to
schooling. This negative correlation between work and school attendance is also reflected in our data.
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may not necessarily increase child labor. They show that assets such as oxen and ploughs
that are operated by adults decrease child labor. To test this hypothesis, in our empirical
specification we include an index of productive farm assets.

Now, while land and labor market imperfections may exist in developing countries, the
extent of imperfection may not be uniform across all countries, or regions within a country.
Hence, the relationship between child labor and different kinds of assets, such as landhold-
ing or agrarian assets, is an empirical question. The question is important because policy
implications could be different under different relationships between various kinds of assets
and child labor. For example, if one were to confirm the findings in BHy and BDD, then if
monetary transfers are used to increase landholding or land redistribution is done in favor
of the poor, child labor may in fact increase. On the other hand, when monetary transfers
are used to increase agrarian assets, then is an inverse relationship between agrarian assets
and child labor holds, such transfers could reduce the incidence of child labor.

In our data, we find the mean of non-agricultural income to be much higher than the
mean agricultural income. This suggests that land is not the only source of income as in
BHy and BDD. BDD assume that land is the only source of income and derive a regression
equation where household income is left out. Since non-agricultural income constitutes a
major portion of total household income, we also control for household income.

We also find that, overtime, land size distribution has become more unequal, which indi-
cates that land market exists in the regions from where the data has been collected. Now,
if land market exists, even if imperfect, then it is unlikely that land owned by households
will be exogenous to a household’s labor supply as in BHy and BDD, where land is mainly
inherited, but endogenously determined along with household’s, including children’s, labor
supply decisions. However, endogeneity could also arise due to omitted variables. These
reasons would necessitate accounting for the endogeneity of landholding along with the en-
dogeneity of productive assets and household income. To address the endogeneity problem
we employ the method developed in the paper.

5.2. Data and Empirical Model

5.2.1. Data

We conduct our empirical analysis at the level of the child using two waves, 2006-07 and
2009-2010, of the data from Young Lives Study (YLS), a panel study from six districts of
the state of Andhra Pradesh (henceforth AP) in India. We restrict our sample to children
in the age group of 5 to 14 years in 2007 living in rural areas, and only a balanced panel is
considered. Finally, excluding children for whom relevant information in either of the years
was missing, we were left with 2458 children, which meant dropping about 23% children
from the balanced panel. Table 2 and Table 3 have the relevant descriptive statistics.

[ Table 2 about here ]
[ Table 3 about here ]

The definition of work12 includes (a) wage labor, (b) non-wage labor and (c) domestic

12Wage labor involves activities for pay, work done for money outside of household, or work done for
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work. Children were asked how much time they spent in the reference period (a typical
day in the last week) doing wage labor, non-wage labor, or domestic chores. If the answer
was positive number of hours for any of the respective activities, then the binary variable
DWORK was assigned value 1, 0 otherwise. Similarly, if the child answered that the s/he
spent positive number of hours at school, the binary variable, DSCHOOL, was assigned
value 1 and 0 otherwise.

As can be seen from Table 2, the proportion of children working increased over the
period of study. The major component of work (not reported here) is due to domestic
chores. While both domestic and non-domestic work registered increase over the years,
the increase in the proportion of children doing non-domestic work was higher. As far as
schooling is concerned, the proportion of older children going to school dropped, but the
proportion of younger children going to school saw increase over the years.

In Table 3, we can see that the mean annual household income (in 2009 rupees) increased
during this period, and that non-agricultural income constitutes major proportion of the
household income. We find that the average size of land owned increased over the years,
and so did the index of farming related productive assets. The Asset Index is constructed
by Principal Component Analysis of several variables, each of which indicate the number
of farming related assets of each kind that the household owns. Farming assets constitute
of agriculture tools, carts, pesticide pumps, ploughs, water pumps, threshers, tractors, and
other farm equipments. Also, the size of landholding became more unequal. Among other
variables, we see that the number of boys are slightly higher compared to the number of
girls.

5.2.2. Empirical Model

We denote by yit = DWORKit, the binary outcome variable that takes value 1 if the
child i decides13 to work and 0 otherwise. We model the decision to work as

yit = 1{y∗it = X ′
itϕϕϕ+ θi + ζit > 0}, (5.1)

where y∗it is amount of time devoted to work by child i in period t. In (5.1), Xit = (www′
it,xxx

′
it)

′,
where wwwit is a vector of strictly exogenous variables and xxxit includes the endogenous vari-
ables: income of the household ( INCOMEit), size of the land holdings ( LANDit), and
the index of productive farm assets ( ASSETit ).

To address the issue of endogeneity, we employ the two-step control function methodol-
ogy developed in the paper, where we first estimate reduced form equations,

xxxit = πzzzit +αααi + ǫǫǫit, (5.2)

someone not a part the household. Non-wage labor includes tasks on family farm, cattle herding (household
and/or community), other family business, shepherding, piecework or handicrafts done at home (not just
farming), and domestic work includes tasks and chores such as fetching water, firewood, cleaning, cooking,
washing, and shopping.

13There is a debate in the literature on whether working or attending school can be properly attributed
to a child’s own decision. See Edmonds (2007) to read more on the debate. Here we maintain that parents’
decisions regarding their child is that of the child’s.
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where zzzit = (www′
it, z̃zz

′
it)

′, z̃zzit being the vector of instruments. The unobserved heterogeneity,
αααi = π̄z̄zzi + aaai, where π̄z̄zzi = E(αααi|Zi) (see AS 3). The triangular representation (5.1) and
(5.2) accounts for the fact that children’s labor supply, y∗it, household income, landholding,
and productive farm assets are determined simultaneously.

We first estimate the parameters, Θ1, of equation (5.2) using the stepwise ML method
in Biørn (2004). Having estimated Θ1, the control functions,

α̂ααi =





α̂INCOME,i

α̂LAND,i

α̂ASSET,i



 and ǫ̂ǫǫit =





ǫ̂INCOME,it

ǫ̂LAND,it

ǫ̂ASSET,it



 ,

based on Θ1 are obtained.
The modified structural equation augmented with control functions to account for en-

dogeneity and heterogeneity is given by

yit = {y∗it = X ′
itϕϕϕ+ ρρραα̂ααi + ρρρǫǫ̂ǫǫit + ηit > 0}, (5.3)

where ηit is distributed normally with mean 0 and variance σ214. Inference about ρρρα and
ρρρǫ provides us with a test of exogeneity of the regressors, xxx.

To identify the impact of the endogenous variables income, landholding, and asset holding
on the decision to participate in work or go to school we employ the following instruments,
z̃zzit: (1) NREGS, explained in the paragraph following, is the total NREGS sanctioned
amount at the mandal (region) level at the beginning of financial year (in 2008-09 prices),
which Afridi et al. (2016) employ to instrument income in their paper, (2) CASTE, caste
(social group) of the child, and (3) a set of four indicator variables that capture the level
of infrastructural development in the household’s locality/settlement.

The National Rural Employment Guarantee Scheme (NREGS) was initiated in 2006
by the Government of India with the objective to alleviate rural poverty. NREGS legally
entitles rural households to 100 days of employment in unskilled manual labour (on public
work projects) at a prefixed wage. Afridi et al. argue that more funds sanctioned would
mean more work opportunity in NREGS, which will have a positive effect on household
income. Now, it can be seen in Table 3 that over the period of our study, the proportion of
children with either parent working in NREGS almost doubled. This increase in participa-
tion was accompanied by a rise in the number of days of work on NREGS projects as well.
Afridi et al. in claiming NREGS to be a valid instrument for income, argue that since
fund sanctioned at the beginning of the financial year is not be affected by current demand
for work, the funds sanctioned is exogenous and more funds imply more work opportunity

14 For many children, as we know, the optimal choice of y∗it is the corner solution, y∗it = 0. For corner
solution outcomes, we are interested in features of the distribution such as

∫

Pr(y∗it > 0|Xit, α̂ααi, ǫ̂ǫǫit)dF (α̂αα, ǫ̂ǫǫ)
and

∫

E(y∗it|Xit, α̂ααi, ǫ̂ǫǫit)dF (α̂αα, ǫ̂ǫǫ), where

E(y∗it|Xit, α̂ααi, ǫ̂ǫǫit) = Pr(y∗it = 0|Xit, α̂ααi, ǫ̂ǫǫit).0 + Pr(y∗it > 0|Xit, α̂ααi, ǫ̂ǫǫit).E(y
∗

it|Xit, α̂ααi, ǫ̂ǫǫit, y
∗

it > 0)

= Pr(y∗it > 0|Xit, α̂ααi, ǫ̂ǫǫit)E(y∗it|Xit, α̂ααi, ǫ̂ǫǫit, y
∗

it > 0).

Due to lack of space, in this application we study only
∫

Pr(y∗it > 0|Xit, α̂ααi, ǫ̂ǫǫit)dF (α̂αα, ǫ̂ǫǫ).
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in NREGS, which can have a positive effect on household income. Also, the total fund
allocation to NREGS increased during the period 2007-2010. However, this increase was
not uniform across the 15 mandals15.

Our second instrument is the caste, a system of social stratification, to which the child
belongs. India is beleaguered with a caste system. Within this caste system, historically, the
Scheduled Castes and Scheduled Tribes (SC/ST’s) have been economically backward and
concentrated in low-skill (mostly agricultural) occupations in rural areas. Moreover, they
were also subject to centuries of systematic caste based discrimination, both economically
and socially. The historical tradition of social division through the caste system created a
social stratification along education, occupation, income, and wealth lines that has contin-
ued into modern India16. Fairing better than SC/ST’s are those belonging to the “Other
Backward Classes ” (OBC)17. Hence, given the fact that income and wealth, both land and
productive assets, vary with caste, we choose CASTE as our second instrument, which is
a discrete variable that takes three values: 1 if the child belongs to SC/ST household, 2
if the child belongs to OBC, and 3 if the child does not belong to SC/ST or OBC group,
which we label as “Others” (OT). The variable CASTE, thus defined, is likely to be a
good predictor of household income and wealth, where the average SC/ST household is
likely to be poor, followed by the OBC’s, and those in the OT group being the wealthiest.

[ Table 4 about here ]
We claim that CASTE is a valid instrument for landholding because, though average

wealth and income are evidently distributed along caste lines, we do not find a significant
variation in child labor or school enrollment across caste or social group to which the child
belongs (see Table 4). In other words, no social group is inherently disposed to make their
children work or send them to school. This could be because rising awareness, overtime,
about returns from education persuades families of all castes to send their children to
school. We find support for the assertion in the literature too. Hnatkovska et al. (2012)
find significant convergence in the education attainment levels and occupation choice of
SC/ST’s and non-SC/ST’s between 1983 and 2004-2005. Moreover, the convergence in
education level has been highest for the youngest cohort.

Our assertion that awareness about higher returns to education has been rising among
all section of the society is also supported by the data. In the first wave of the data,
the following question was asked: “Imagine that a family in the village has a 12 year old
son/daughter who is attending school full-time. The family badly needs to increase the

15Data on the sanctioned funds at the mandal level is obtained from the Andhra Pradesh Government’s
website on NREGS (http://nrega.ap.gov.in/).

16In fact, this stratification was so endemic that the constitution of India aggregated these castes into a
schedule of the constitution and provided them with affirmative action cover in both education and public
sector employment. This constitutional initiative was viewed as a key component of attaining the goal of
raising the social and economic status of the SC/STs to the levels of the non-SC/ST’s.

17The Government of India classifies, a classification based on social and economic conditions, some
of its citizen as Other Backward Classes (OBC). The OBC list is dynamic (castes and communities can
be added or removed) and is supposed to change from time to time depending on social, educational
and economic factors. In the constitution, OBC’s are described as “socially and educationally backward
classes”, and government is enjoined to ensure their social and educational development.
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household income. One option is to send the son/daughter to work but the son/daughter
wants to stay in school. What should the family do?” An overwhelming percentage of the
respondents answered that they should let children be at school; moreover, there was little
difference in the response across caste groups – 90% of SC/ST’s, 87% of OBC’s, and 93%
of OT’s wanted that sons of such distressed families be kept at school. For daughters, the
corresponding figures are: 87% of SC/ST’s, 87% of OBC’s, and 91% of OT’s. Also, 96%
of SC/ST households expected their children to complete a minimum of high school. The
corresponding figure for OBC’s and OT’s are 95% and 98% respectively.

Our third set of instruments is the set of four dummy variables, which indicate (1) if
drinkable water is provided in the locality/settlement, (2) if the services of a national bank
are provided in the locality, (3) if private hospitals exist in the locality, and (4) if access to
the locality is via an engineered road. As in BHy, these variables, which indicate the level
of infrastructure development, are employed to instrument the index of productive farm
assets.

5.3. Discussion of Results

We begin by discussing the results of the first stage reduced form equations in (5.2).
The results in Table 5 suggest that our instruments are good predictors of the endogenous
variables, income and wealth. First, corroborating the results in Afridi et al., we too find
that an increase in the amount sanctioned for NREGS projects in a mandal increases the
household income. Secondly, as expected, CASTE does, on an average, correctly predict
the economic status of household in the regression of income, land holding, and assets on
CASTE. Finally, the dummy variables indicating the level of infrastructure development
are positively correlated with the index of productive farm assets.

[ Table 5 about here ]
The second-stage estimates of the structural equation (5.3) are illustrated in Table 6.

Here, we would like to state that (a) our specification is parsimonious, where the only
exogenous explanatory variables are the age and the sex of the children. (b) To estimate the
slope coefficients in (5.3), we employ STATA’s routine for generalized estimating equation.
(c) All the specifications include district dummies, a time dummy, and the interaction
of the two to account for the fact that the districts to which children belong may have
different economic growth trajectories as well as trends related to work and education.
The time dummy allows us to control for changes in demand and supply of work over time.
(d) The average partial effects (APEs) of variables were computed at the mean of variables
from the second round (2010) of data. (e) The standard errors were estimated using the
analytical expression of the covariance matrix derived in appendix A of the supplementary
appendix.

[ Table 6 about here ]
We begin by comparing the results from standard correlated random effect (CRE) probit

model with the results developed in this paper. It can be evinced from Table 6 that most of
the control functions – α̂INCOME, α̂LAND, α̂ASSET , ǫ̂INCOME, ǫ̂LAND, ǫ̂ASSET – are signifi-
cant. This suggests that income and ownership of wealth, be it land or productive assets,
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are endogenously determined along with household’s labor supply, including that of the
child’s, decisions. When income and wealth are not instrumented, as in the CRE probit, the
coefficient estimate for household income, in the light of the discussion in the paper, has
an incorrect sign. Moreover, the result of CRE probit suggests that ownership of land and
farm assets do not affect child labor, which, given the many recent evidences, is unlikely
in a developing country. The results, thus, make clear the importance of accounting for
endogeneity of income, landholding, and farm asset.

The estimates from the control function method suggest that children of households that
have a higher landholding are more likely to engage in work18. This is in conformity with
the findings in BDD, BHy and CD, where, due to presence of land, labor, and credit market
imperfections, ownership of large amount land provides incentives for children to work. As
far as income is concerned, we find that higher household income reduces the chances of
child labor, which again confirms poverty to be a cause of child labor.

We find that ownership of productive farm assets leads to a significantly high reduction
in children’s participation in work for the average family. Dumas, BHy and CD argue that
an increase in asset holding that increases the marginal productivity of labor induces two
opposite effects on labor. While the income effect of increased wealth tends to reduce the
labor time, the substitution effect, due to the absence of labor market, provides incentives
for work, and tends to increase children’s labor time. Our results suggest that the wealth
effect of farm assets, which are not likely to be operated by children, dominate to reduce
children’s labor time. Secondly, since the prevalence of farm assets is high in those regions
where there has been infrastructure development, it seems that lack of infrastructure de-
velopment that impedes access to, or does not provide incentives to acquire, productive
farm assets may be an important factor determining child labor19. Finally, we find that
older children and boys are more likely to work.

6. CONCLUDING REMARKS

The primary objective of the paper has been to develop a method to point estimate
structural measures of interest for panel data binary response model in a triangular system
while accounting for multi-dimension unobserved heterogeneity. The unobserved hetero-
geneity terms constitute of time invariant random effects/coefficients and idiosyncratic
errors. We first identify the expected values – conditional on the endogenous variables,
Xi ≡ (xxx′

i1, . . . ,xxx
′
iT )

′, and the exogenous variables, Zi ≡ (zzz′i1, . . . , zzz
′
iT )

′ – of the heterogene-
ity terms of the reduced form equations, and show that given these expected values, the

18Though we do not report here, we did not find that nonlinear terms of income, land, and productive
assets to be significant

19In a separate set of regressions that included only the exogenous variables, we tried to assess if the in-
frastructure variables had independent impacts on work and schooling decisions of children. These variables
turned out to be insignificant, suggesting that the demand for child labor or opportunities for schooling
were not affected by infrastructure development or its lack in rural AP. In other words, infrastructure had
its effect on work and schooling outcomes only through its impact on the economic conditions of certain
households. This also validates using infrastructure variables as instruments for farm assets.
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measures of interest are identified. We then propose that these conditional expected values
of the heterogeneity terms in the reduced form equations be used as control functions.

The proposed method makes a number of interesting contribution to the literature. Apart
from achieving identification of measures such as the average partial effects in a triangular
system with multi-dimensional heterogeneity, among the class of triangular system with
imposed structures similar to ours, the proposed control function method requires weaker
restrictions than the traditional control function methods. Finally, the method allows for
instruments with small support, which was possible due to panel data and time invariance
of certain heterogeneity terms. Also, Monte Carlo experiments show that compared to
alternative panel data binary choice models similar to ours, our method performs better.

The estimator was applied to estimate the causal effects of income and wealth – land
and farm assets – on the incidence of child labor. We found that income and household
ownership of productive farm assets significantly lower the incidence of child labor, suggest-
ing a strong income effect of productive farm assets. Secondly, large landholding increases
the likelihood of child labor, suggesting a substitution effect of land ownership. Thirdly, a
test of exogeneity revealed that ownership of land is determined endogenously along with
household labor supply decisions, contrary to what most empirical studies on child labor
in developing countries assume.

Finally, we would like to note that for a more general semiparametric method, an im-
portant generalization would be to identify and estimate the proposed control functions
without making distributional assumptions about the heterogeneity terms of the reduced
form equations.
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APPENDIX A PROOFS

Lemma 1 (a) Suppose xxxt is specified as

xxxt = πzzzt + π̄z̄zzt + aaa+ ǫǫǫt, t ∈ {1, . . . , T},

where aaa and ǫǫǫt are normally distributed with variances Λαα and Σǫǫ respectively, then

E(aaa|X,Z) = âaa(X,Z,Θ1) = [TΣ−1
ǫǫ + Λ−1

αα]
−1Σ−1

ǫǫ

T
∑

t=1

(xxxt − πzzzt − π̄z̄zzt).

(b) Suppose we have a single endogenous variable, xt, given by

xt = πzzzt + a + ǫt, t = 1, . . . , T,

where the errors, ǫǫǫ ≡ (ǫ1, . . . , ǫT )
′, are non-spherical such that E(ǫǫǫǫǫǫ′) = Ω, a T ×T matrix,

and a is normally distributed with variance σ2
α, then

E(aaa|X,Z) = â(X,Z,Θ1) = (x1 − πzzz1)ω1 + . . .+ (xT − πzzzT )ωT ,

where (ω1, . . . , ωT )
′ = Ω−1e

(e′Ω−1e+σ−2
α )

and e is a vector of ones of dimension T .

(c) If xit = zzz′itααα + zzz′itaaai + ǫit, where aaai ∼ N(0,Σa) and ǫit ∼ N(0, σ2
ǫ ), then

âaai(Xi, Zi,Θ1) = [

T
∑

t=1

zzzitzzz
′
it + σ2

ǫΣ
−1
a ]−1

( T
∑

t=1

zzzit(xit − zzz′itααα)

)

.

Proof 1

(a) To obtain âaa, using Bayes rule we first write f(aaa|X,Z) as

f(aaa|X,Z) =
f(X,Z|aaa)g(aaa)

h(X,Z)
,

where g and h are density functions. The above can be written as

f(X,Z|aaa)g(aaa)
h(X,Z)

=
f(X|Z,aaa)p(Z|aaa)g(aaa)

h(X|Z)p(Z) .

Since Z is independent of the residual individual effects, aaa, p(Z|aaa) = p(Z); that is,

f(aaa|X,Z) =
f(X|Z,aaa)g(aaa)

h(X|Z) =
f(X|Z,aaa)g(aaa)

∫

f(X|Z,aaa)g(aaa)daaa.

Given the above, we can obtain âaai(X,Z,Θ1) = E(aaai|Xi, Zi) as

âaa(X,Z,Θ1) =

∫

aaaf(aaa|X,Z)d(aaa) =

∫

aaaf(X|Z,aaa)g(aaa)daaa
∫

f(X|Z,aaa)g(aaa)daaa. (A-1)
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Since aaa is normally distributed with mean zero and variance Λαα, g(aaa) = φ(aaa), where φ(aaa)
is the multivariate normal density function of aaa. Given that xxxt = πzzzt + π̄z̄zzt +aaa+ ǫǫǫt, where
aaa and ǫǫǫt are normally distributed with variances Λαα and Σǫǫ respectively, conditional on
Z and aaa each of the xxxt’s of X ≡ (xxx1, . . . ,xxxT ) are independently and normally distributed
with mean πzzzt+ π̄z̄zzt+aaa and standard deviation Σǫǫ. Thus for an individual i the expected
a posteriori value of aaai is given by

âaa(X,Z,Θ1) =

∫

aaa
∏T

t=1 f(xxxt|Z,aaa)φ(aaa)daaa
∫
∏T

t=1 f(xxxt|Z,aaa)φ(aaa)daaa

=

∫

aaa exp(−1
2

∑T
t=1(υυυt − aaa)′Σ−1

ǫǫ (υυυt − aaa))φ(aaa)daaa
∫

exp(−1
2

∑T
t=1(υυυt − aaa)′Σ−1

ǫǫ (υυυt − aaa))φ(aaa)daaa
. (A-2)

In (A-2), for convenience we have, with a slight abuse of notation, defined υυυt as υυυt =
xxxt − πzzzt − π̄z̄zzt, whereas in the main text υυυt = xxxt − πzzzt. Also, the dimension of xxxt, dx = m.

Since φ(aaa) = 1√
(2π)m|Λαα|

exp(aaa′Λ−1
ααaaa), the expression, exp(−1

2

∑T
t=1(υυυt − aaa)′Σ−1

ǫǫ (υυυt −
aaa))φ(aaa), in the numerator and denominator of âaa(X,Z,Θ1) can be written as

exp(−1

2

T
∑

t=1

(υυυt − aaa)′Σ−1
ǫǫ (υυυt − aaa))φ(aaa) =

1
√

(2π)m|Λαα|
exp

[

− 1

2

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

exp

[

− 1

2

(

−
( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ aaa− aaa′Σ−1

ǫǫ

( T
∑

t=1

υυυt

)

+ aaa′Σ−1aaa

)]

,

where Σ−1 = TΣ−1
ǫǫ + Λ−1

αα.
Let aaa = C ′aaa, CC ′ being the Cholesky decomposition of the matrix, Σ−1 = TΣ−1

ǫǫ +
Λ−1

αα. Hence, aaa = C ′−1
aaa, aaa′Σ−1aaa = aaa

′
aaa and daaa = |C ′−1|daaa. Thus we can write the second

expression in the above equation as

exp

[

− 1

2

(

−
( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ aaa− aaa′Σ−1

ǫǫ

( T
∑

t=1

υυυt

)

+ aaa′Σ−1aaa

)]

=

exp

[

− 1

2

(

−
( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1
aaa− aaa

′(C ′−1)′Σ−1
ǫǫ

( T
∑

t=1

υυυt

)

+ aaa
′
aaa

)]

.

Subtracting and adding the term, 1
2

(

∑T
t=1 υυυ

′
t

)

Σ−1
ǫǫ C

′−1(C ′−1)′Σ−1
ǫǫ

(

∑T
t=1 υυυt

)

, inside the

square parenthesis, we get

exp

[

− 1

2

(

−
( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ aaa− aaa′Σ−1

ǫǫ

( T
∑

t=1

υυυt

)

+ aaa′Σ−1aaa

)]

= exp

[

1

2

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1(C ′−1)′Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

exp

[

− 1

2

(( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1(C ′−1)′Σ−1
ǫǫ

( T
∑

t=1

υυυt

)

−
( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1
aaa− aaa

′(C ′−1)′Σ−1
ǫǫ

( T
∑

t=1

υυυt

)

+ aaa
′
aaa

)]

,
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where the RHS simplifies to

exp

[

1

2

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

exp

[

− 1

2

(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))′(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))]

.

Therefore the expression, exp(−1
2

∑T
t=1(υυυt − aaa)′Σ−1

ǫǫ (υυυt − aaa))φ(aaa), in the numerator and
denominator of âaa(X,Z,Θ1) becomes

exp(−1

2

T
∑

t=1

(υυυt − aaa)′Σ−1
ǫǫ (υυυt − aaa))φ(aaa) =

1
√

|Λαα|
exp

[

− 1

2

( T
∑

t=1

υυυt

)′

Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

exp

[

1

2

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

1
√

(2π)m
exp

[

− 1

2

(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))′(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))]

. (A-3)

First, note that the term,

1
√

|Λαα|
exp

[

− 1

2

( T
∑

t=1

υυυt

)′

Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

exp

[

1

2

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ C

′−1C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

)]

,

on the RHS of equation (A-3) is independent of aaa. Therefore it can be taken out of the
integration in expression for âaai(Xi, Zi,Θ1). And since it is in both the numerator and the
denominator, the term cancels out. The second thing to note is that the expression,

1
√

(2π)m
exp

[

− 1

2

(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))′(

aaa− C−1Σ−1
ǫǫ

( T
∑

t=1

υυυt

))]

,

on the RHS of the equation (A-3) is the normal density function of aaa, φm(aaa) , with mean

C−1Σ−1
ǫǫ

(

∑T
t=1 υυυt

)

and variance Im. Thus we get

âaai(Xi, Zi,Θ1) =
C ′−1

∫

aaaφm(aaa)daaa
∫

φm(aaa)daaa
= C ′−1C−1Σ−1

ǫǫ

( T
∑

t=1

υυυt

)

= ΣΣ−1
ǫǫ

( T
∑

t=1

υυυt

)

= [TΣ−1
ǫǫ + Λ−1

αα]
−1Σ−1

ǫǫ

( T
∑

t=1

υυυt

)

, (A-4)

where the expression after the second equality is obtained because
∫

φm(aaa)daaa = 1 and
∫

aaaφm(aaa)daaa = C−1Σ−1
ǫǫ

(

∑T
t=1 υυυt

)

. Finally,

C ′−1C−1 = (CC ′)−1 = (Σ−1)−1 = Σ = [TΣ−1
ǫǫ + Λ−1

αα]
−1.
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(b) While discussing the restrictions imposed on the reduced form equation, we had
stated that when dx = 1, the assumption that a and ǫt are completely independent of Z
can be weakened to allow for non-spherical error components. Suppose that ǫt, t = 1, . . . , T
are serially dependent such that ǫǫǫ ≡ (ǫ1, . . . , ǫT )

′ normally distributed with E(ǫǫǫǫǫǫ′) = Ω
and a is normally distributed and heteroscedastic as in Baltagi et al. (2010). Given the
distribution of the error terms, the expected a posteriori value of ai is given by

â(X,Z,Θ1) =

∫

af(X|Z, a)φ(a)da
∫

f(X|Z, a)φ(a)da

=

∫

a exp(−1
2
(υυυ − ae)′Ω−1(υυυ − ae))φ(a)da

∫

exp(−1
2
(υυυ − a)′Ω−1(υυυ − ae))φ(a)da

,

where e is a vector of ones with dimension T and υυυ ≡ ((x1 − πzzz1), . . . , (xT − πzzzT ))
′.

Now, the expression, exp(−1
2
(υυυ−ae)′Ω−1(υυυ−ae))φ(a), in the numerator and denominator

of â(X,Z,Θ1) can be written as

exp(−1

2
(υυυ − ae)′Ω−1(υυυ − ae))φ(a) =

1√
2πσα

exp

[

− 1

2
υυυ′Ω−1υυυ

]

exp

[

− 1

2

(

− υυυ′Ω−1ae− ae′Ω−1υυυ + a2σ2

)]

,

where σ2 = e′Ω−1e + 1
σ2
α
. As in part (a), if we let a = aσ, then we have a = a

σ
, a2σ2 = a

2

and da = da
σ
. Following the same procedure as in part (a) it can be shown that

â(X,Z,Θ1) = (x1 − πzzz1)ω1 + . . .+ (xT − πzzzT )ωT ,

where (ω1, . . . , ωT )
′ = Ω−1e

(e′Ω−1e+σ−2
α )

.

(c) As in the model with random effects, using Bayes rule we can obtain âaai(Xi, Zi,Θ1) =
E(aaai|Xi, Zi) as

âaai(Xi, Zi,Θ1) =

∫

aaaif(aaai|Xi, Zi)d(aaai) =

∫

aaaif(Xi|Zi, aaai)φ(aaai)daaai
∫

f(Xi|Zi, aaai)φ(aaai)daaai
, (A-5)

where φ(aaai) denotes the normal distribution of aaai, which is distributed with mean zero
and variance Σa, and conditional on Zi and aaai, each of the xit’s of Xi ≡ (xi1, . . . , xiT )

′ are
independently normally distributed with mean zzz′itααα + zzz′itaaai and standard deviation σǫ. In
equation (A-5) we have written the expected value of aaai given Xi, Zi, which, dropping the
subscript i, is given by

âaa(X,Z,Θ1) =

∫

aaa
∏T

t=1 f(xt|Z,aaa)φ(aaa)daaa
∫
∏T

t=1 f(xt|Z,aaa)φ(aaa)daaa

=

∫

aaa exp(− 1
2σ2

ǫ

∑T
t=1(υt − zzz′taaa)

2)φ(aaa)daaa
∫

exp(− 1
2σ2

ǫ

∑T
t=1(υt − zzz′taaa)

2)φ(aaa)daaa
, (A-6)
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where υt = xt − zzz′tααα.

Since φ(aaa) = 1√
(2π)m|Σa|

exp(aaa′Σ−1
a aaa), the expression, exp(− 1

2σ2
ǫ

∑T
t=1(υt − zzz′taaa)

2)φ(aaa), in

the numerator and denominator of âaa(Xi, Z,Θ1) can be written as

exp(− 1

2σ2
ǫ

T
∑

t=1

(υt − zzz′taaa)
2)φ(aaa) =

1
√

(2π)m|Σa|
exp

(

− 1

2σ2
ǫ

T
∑

t=1

υ2
t

)

exp

[

− 1

2

(

− 2

σ2
ǫ

T
∑

t=1

υtzzz
′
taaa+ aaa′Σ−1aaa

)]

,

where Σ−1 = 1
σ2
ǫ

∑T
t=1 zzztzzz

′
t + Σ−1

a .

Since Σ−1
a and

∑T
t=1 zzztzzz

′
t are both positive definite, Σ−1 too is positive definite. Let

aaa = C ′aaa, CC ′ being the Cholesky decomposition of the matrix, Σ−1. Hence, aaa = C ′−1
aaa,

aaa′Σ−1aaa = aaa
′
aaa and daaa = |C ′−1|daaa. Thus we can write the second expression in the above

equation as

exp

[

− 1

2

(

− 2

σ2
ǫ

T
∑

t=1

υtzzz
′
taaa+ aaa′Σ−1aaa

)]

= exp

[

− 1

2

(

−
(

2

σ2
ǫ

T
∑

t=1

υtzzz
′
t

)

C ′−1
aaa+ aaa

′
aaa

)]

.

Subtracting and adding the term, 1
2

(

1
σ2
ǫ

∑T
t=1 υtzzz

′
t

)

C ′−1(C ′−1)′
(

1
σ2
ǫ

∑T
t=1 zzztυt

)

, inside

the square parenthesis, and then proceeding as in part (a), we can show that

âaai(Xi, Zi,Θ1) = [

T
∑

t=1

zzzitzzz
′
it + σ2

ǫΣ
−1
a ]−1

( T
∑

t=1

zzzit(xit − zzz′itααα)

)

.

Lemma 2 If (i) ∄ Ax ⊆ Rdx such that PrPx(Ax) = 1 under Px, where Ax is a proper
linear subspace of Rdx ; (ii) rank(Π) = dx, where Π =

(

π π̄
)

; (iii) ∄ Az ⊆ Rk, where
k = dim((zzz′t, z̄zz

′)′), such that PrPz(Az) = 1 under Pz, where Az is a proper linear subspace
of Rk; and (iv) if the covariance matrices of ǫǫǫt and ααα are of full rank, then there exists
no A ⊆ R3dx, Xt ∈ R3dx , such that A has probability 1 under PX and A is a proper linear
subspace of R3dx.

Proof 2

Now, condition (i) of the lemma is the “rank condition” for the standard probit model
when xxxit in (2.1) is exogenous and the object of interest is ϕϕϕ or marginal effects. The
condition is assumed to hold true. Similarly, condition (iii) is the rank condition for the
identification of the reduced form coefficients, Π =

(

π π̄
)

, which is also assumed to hold
true.
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To show that the statement of the theorem is true, we have to show that:

∄ A =

{





xxxt

α̂αα
ǫ̂ǫǫ



 ∈ R3dx

∣

∣

∣

∣

xxx′
tcccx + α̂αα′cccα + ǫ̂ǫǫ′cccǫ = 0,





cccx
cccα
cccǫ



 6= 0

}

such that PrPX
(A) = 1.

(A-7)

In other words, we have to show that xxx′
tcccx + α̂αα′cccα + ǫ̂ǫǫ′cccǫ 6= 0 almost surely (a.s.) whenever

(ccc′x, ccc
′
α, ccc

′
ǫ)

′ 6= 0.
To begin with, without loss of generality assume that zzzt is uncorrelated with the indi-

vidual effects ααα so that π̄z̄zz = 0. This implies that we can ignore z̄zz in the reduced form
equation (2.3) and consider only the dimension of zzzt, which is dz, in condition (iii) of the
lemma, and that

Π = π, α̂αα = âaa, ǫ̂ǫǫt = xxxt − πzzzt − âaa, k = dx, and π a dx × dz matrix.

First, condition (i) of the lemma implies that

for any ccc ∈ Rdx and ccc 6= 0, xxx′
tccc 6= 0 a.s.. (A-8)

Thus in (A-7), xxx′
tcccx 6= 0 a.s..

By condition (ii), because rank of π′ is dx, for any ccc ∈ Rdx and ccc 6= 0,

π′ccc = c̄cc 6= 0. (A-9)

By condition (iii) of the lemma, we have

for any ccc ∈ Rdz and ccc 6= 0, zzz′tccc 6= 0 a.s.. (A-10)

Now, α̂αα′cccα in (A-7) is

α̂αα′cccα =

(

[TΣ−1
ǫǫ + Λ−1

αα]
−1Σ−1

ǫǫ

( T
∑

t=1

υυυt

))′

cccα =

( T
∑

t=1

υυυ′
t

)

Σ−1
ǫǫ [TΣ

−1
ǫǫ + Λ−1

αα]
−1cccα

=

( T
∑

t=1

υυυ′
t

)

c̄ccα,

where υυυt = xxxt−πzzzt. Because Σǫǫ and Λαα, the covariance matrices of ǫǫǫt and ααα respectively,
are symmetric positive definite matrices, Σ−1

ǫǫ [TΣ
−1
ǫǫ + Λ−1

αα]
−1 is nonsingular. This implies

that Σ−1
ǫǫ [TΣ

−1
ǫǫ + Λ−1

αα]
−1cccα = c̄ccα 6= 0. By (A-8) then, xxx′

tc̄ccα 6= 0, and by (A-9) and (A-10),
zzz′tπ

′c̄ccα 6= 0 a.s.. Thus (xxx′
t − zzz′tπ

′)c̄ccα = υυυ′
tc̄ccα 6= 0, when xxxt 6= πzzzt a.s.. Therefore,

α̂αα′cccα =

( T
∑

t=1

υυυ′
t

)

c̄ccα 6= 0 a.s.. (A-11)
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We now show that ǫ̂ǫǫ′tcccǫ 6= 0 a.s. when cccǫ 6= 0. Now

ǫ̂ǫǫ′tcccǫ = xxx′
tcccǫ − zzz′tπ

′cccǫ − α̂αα′cccǫ.

By condition (i) of the lemma, we know that xxx′
tcccǫ 6= 0 a.s., by (A-8) we have that α̂αα′cccǫ 6= 0

a.s., and by (A-9) and (A-10), zzz′tπ
′cccǫ 6= 0 a.s.. These imply that

ǫ̂ǫǫ′cccǫ 6= 0 a.s.. (A-12)

Thus (A-8), (A-11), and (A-12) together imply that xxx′
tcccx + α̂αα′cccα + ǫ̂ǫǫ′cccǫ 6= 0 a.s. whenever

(ccc′x, ccc
′
α, ccc

′
ǫ)

′ 6= 0.

Lemma 3 The support of the conditional distribution of α̂αα(X,Z, Θ̂1) and ǫ̂ǫǫt(X,Z, Θ̂1),
conditional on xxxt = x̄xx, is same as the support of their marginal distribution.

Proof 3

(a) We have shown that the expected value of ααα = π̄z̄zz + aaa and ǫǫǫt given Z and X , where
aaa and ǫǫǫt are normally distributed with variances Λαα and Σǫǫ respectively, are given

E(ααα|X,Z) = α̂αα = π̄z̄zz + âaa = π̄z̄zz +

T
∑

t=1

Ω(xxxt −ΠZt) and

E(ǫǫǫt|X,Z) = ǫ̂ǫǫt = xxxt − ΠZt −
T
∑

t=1

Ω(xxxt − ΠZt) respectively,

where Π = (π̄, π̄), Zt = (zzz′t, z̄zz
′)′ (see equation (2.3)), and Ω = [TΣ−1

ǫǫ + Λ−1
αα]

−1Σ−1
ǫǫ .

When xxxt − ΠZt 6= constant almost surely or when zzzt has a small support, because xxxt’s
have unbounded support in Rdx and Ω is a dx × dx nonsingular matrix,

Supp(α̂αα) = Supp(ǫ̂ǫǫt) = Rdx .

Now fix xxxt = x̄xx. Then, because the xxxs’s, s 6= t, are not restricted, we have

Supp(α̂αα|xxxt = x̄xx) = Supp

(

π̄z̄zz +Ω(x̄xx−ΠZt) +
∑

s 6=t

Ω(xxxs − ΠZs)

)

= Rdx and

Supp(ǫ̂ǫǫt|xxxt = x̄xx) = Supp

(

[Im −Ω](x̄xx−ΠZt)−
∑

s 6=t

Ω(xxxs −ΠZs)

)

= Rdx .

(b) When we have a single endogenous variable, xt, given by

xt = ΠZt + a+ ǫt, t = 1, . . . , T,
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where the errors, ǫǫǫ ≡ (ǫ1, . . . , ǫT )
′, are non-spherical such that E(ǫǫǫǫǫǫ′) = Ω, a invertible

T × T matrix, and a is normally distributed with variance σ2
α, then we showed that

â(X,Z,Θ1) = (x1 −ΠZ1)ω1 + . . .+ (xT − ΠZT )ωT ,

where (ω1, . . . , ωT )
′ = Ω−1e

(e′Ω−1e+σ−2
α )

and e is a vector of ones of dimension T .

Given that xt’s have large supports, using a similar argument as in part (a), we get

Supp(â|xt = x̄) = R and Supp(ǫ̂t|xt = x̄) = R.
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7. TABLES AND FIGURES

TABLE 1

Performance of the APE, ∂G(xit)
∂x

∣

∣

xit=1
, for alternative estimators.

EAP Method Papke and Wooldridge Chamberlain’s CRE Probit Chamberlain’s Logit
RMSE Median RMSE Median RMSE Median RMSE Median

n= 200 .01321 -.09358 .05312 -.04204 .03719 -.05771 .02276 -.10633
n= 500 .00808 -.09383 .05232 -.04216 .03645 -.05798 .01667 -.10582
n= 1000 .00555 -.09389 .05196 -.04225 .03620 -.05792 .01435 -.10571
n= 2000 .00392 -.09394 .05171 -.04238 .03599 -.05806 .01316 -.10576
n= 5000 .00243 -.09392 .05175 -.04226 .03603 -.05796 .01222 -.10561

TABLE 2

Work Status by Age Group

Year 2007 Year: 2010
Age Group Not Working Working Total Age Group Not Working Working Total
5 to 7 years 45.25 5.02 50.27 8 to 10 years 31.25 19.03 50.27
8 to 14 years 22.88 26.85 49.73 11 to 17 years 14.98 34.75 49.73
Total 68.13 31.87 100.00 Total 46.23 53.77 100.00

The figures are in percentage. Total number of children in each period: 2458
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Figure 1: Comparison with Alternative Estimators: Density of ̂∂G(xit)/∂x − ∂G(xit)/∂x
for different Sample Size.
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TABLE 3

Descriptive Statistics

2007 2010
Variable Mean Std. Dev. Mean Std. Dev.

Child characteristics
Sex (Male=1, Female=0) 0.52 0.50 0.52 0.50
Age (yrs.) 8.07 2.97 11.07 2.97

Household characteristics
Parents participated in NREGS (Yes=1 & No=0) 0.33 0.47 0.66 0.47
Total number of days parents worked in NREGS 9.21 21.44 36.00 48.10
Land Owned (acre) 2.32 3.42 3.86 43.53
Asset Index -0.13 0.98 0.22 1.46
Gini Coefficient for Land Owned 0.62 0.74
Total Income of Household (in Thousand |) 30.91 34.35 48.88 60.24
Annual non-agricultural income (|) 20787 35813 29013 62225
Annual agricultural income (|) 5060 23319 9936 42746
Does a household own farm assets (Yes=1 & No=0) 0.69 0.46 0.91 0.29
Number of farm assets 4.70 11.06 6.29 9.01

Community (Mandal) characteristics
Total NREGS amount sanctioned (in Million |) 7.25 8.30 20.19 19.17

Infrastructure Variables
Engineered Road to the Locality (Yes=1 & No=0) 0.32 0.47 0.58 0.49
Drinkable Water in the Locality (Yes=1 & No=0) 0.87 0.34 0.86 0.34
National Bank in the Locality (Yes=1 & No=0) 0.23 0.41 0.08 0.27
Hospital in the Locality (Yes=1 & No=0) 0.37 0.89 0.38 0.48

Total number of children/observations in each period: 2458
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TABLE 4

Descriptive Statistics of some Variables by Caste

Scheduled Castes/Tribes Other Backward Classes Others
Year: 2007 Household Income 31.22 31.64 43.21

(in Thousand |) (33.94) (34.29) (48.59)
Land Owned 1.58 2.32 3.08

in acre (2.12) (3.51) (4.53)
Index of Productive -0.22 -0.14 0.04

Farm Asset (0.71) (1.02) (1.17)
School Dummy 0.90 0.89 0.96
DSCHOOL = 1 (0.29) (0.32) (0.19)
Work Dummy 0.33 0.33 0.29
DWORK = 1 (0.47) (0.47) (0.45)

Year: 2010 Household Income 45.99 50.22 64.76
(in Thousand |) (45.51) (66.35) (70.26)
Land Owned 2.10 2.79 10.90

in acre (1.95) (15.82) (108.71)
Index of productive 0.12 0.29 0.54

Farm Asset (1.16) (1.56) (1.89)
School Dummy 0.89 0.87 0.94
DCHOOL = 1 (0.31) (0.33) (0.23)
Work Dummy 0.52 0.57 0.48
DWORK = 1 (0.50) (0.49) (0.50)

Number of Children/observations
in each period: 906 1269 283

Standard errors in parentheses.
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TABLE 5

First Stage Reduced Form Estimates: Joint Estimation of Income, Land, and Wealth
Equation

Income Landholding Farm Asset
Total NREGS amount sanctioned (in Million |) 0.047∗∗∗ -0.008 -0.0003

(0.009) (0.007) (0.0002)
Caste (SC/ST = 1, OBC = 2, OT = 3) 9.220∗∗∗ 2.278∗∗∗ 0.171∗∗∗

(1.217) (0.726) (0.0300)
Drinkable Water in the Locality (Yes=1 & No=0) 5.417 -1.879 0.341∗∗

(5.703) (4.260) (0.150)
National Bank in the Locality (Yes=1 & No=0) -2.785 4.684∗∗ 0.046

(3.099) (2.315) (0.082)
Engineered Road to the Locality (Yes=1 & No=0) 0.159 2.413 0.182∗∗∗

(2.130) (1.591) (0.0561)
Hospital in the Locality (Yes=1 & No=0) -0.689 -4.143∗∗∗ 0.056∗

(1.248) (0.932) (0.033)
Other Exogenous Variables of the Structural Equations: Yes Yes Yes
Age and Sex of the Child

Total number of observations : 5140
Biørn’s Stepwise MLE was employed to obtain these estimates. All the specifications include time dummy,
district dummies, and the interaction of time and district dummies.
Standard errors in parentheses
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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TABLE 6

Household Income and Wealth Effect on Child’s Decision to Work

CRE Probit Control Function Method
Coefficients Coefficients APEs

Income 0.003∗∗∗ -0.0234∗∗∗ -0.0054∗∗∗

(0.0008) (0.0028) (0.0008)
Landholding 0.002 0.031∗∗∗ 0.0071∗∗∗

(0.002) (0.007) (0.0017)
Farm Asset Index -0.011 -0.976∗∗∗ -0.226∗∗∗

(0.0279) (0.169) (0.0302)
Age 2.019∗∗∗ 0.402∗∗∗ 0.093∗∗∗

(0.072) (0.057) (0.009)
Sex 0.644∗∗∗ 0.394∗∗∗ 0.0908∗∗∗

(0.042) (0.0473) (0.0129)

Control Functions
α̂INCOME 0.005

(0.00302)
α̂LAND -0.015∗∗

(0.0065)
α̂ASSET 1.512∗∗∗

(0.129)
ǫ̂INCOME 0.0275∗∗∗

(0.003)
ǫ̂LAND -0.031∗∗∗

(0.0075)
ǫ̂ASSET 0.882∗∗∗

(0.185)

Total number of children: 2458
Total number of observations: 4916. Total number of observations with positive outcome: 2128
CRE Probit is Chamberlain’s Correlated Random Effect model for panel data binary choice outcomes.
All the specifications include time dummy, district dummies, and the interaction of the two.
Standard errors (SE) in parentheses
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%



SUPPLIMENTRY APPENDIX FOR PANEL DATA BINARY RESPONSE MODEL IN A
TRIANGULAR SYSTEM

The supplementary appendix is not meant to be included with the main text

of the paper.

APPENDIX A: ASYMPTOTIC COVARIANCE MATRIX FOR STRUCTURAL PARAMETERS

Though obtaining the parameters of the second stage, given the first stage consistent
estimates Θ̂1, is asymptotically equivalent to estimating the subsequent stage parameters
had the true value of Θ∗

1 been known, to obtain correct inference about the structural
parameters, one has to account for the fact that instead of true values of first stage reduced
form parameters, we use their estimated value. Here we are assuming that the first stage
estimation involves the estimation of system of regression using Biørn’s method and that
in the second stage a probit model, using the method of multivariate weighted nonlinear
least squares (MWNLS), is estimated.

Newey (1984) has shown that sequential estimators can be interpreted as members of
a class of Method of Moments (MM) estimators and that this interpretation facilitates
derivation of asymptotic covariance matrices for multi-step estimators. Let Θ = (Θ′

1,Θ
′
2)

′,
where Θ1 and Θ2 are respectively the parameters to be estimated in the first and second
step estimation of the sequential estimator. Following Newey (1984) we write the first and
second step estimation as an MM estimation based on the following population moment
conditions:

E(LiΘ1
) = E

∂ lnLi(Θ1)

∂Θ1

= 0

E(HiΘ2
(Θ1,Θ2)) = 0

and where Li(Θ1) is the likelihood function for individual i for the first step system of
reduced form equations and E(HiΘ2

(Θ1,Θ2)) is the population moment condition for esti-
mating Θ2 given Θ1.

The estimates for Θ1 and Θ2 are obtained by solving the sample analog of the above
population moment conditions. The sample analog of moment conditions for the first step
estimation is given by

1

N
LΘ1

(Θ̂1) =
1

N

N∑

i=1

∂Li(Θ̂1)

∂Θ1
=

1

N

N∑

i=1

∂ lnLi(Θ̂1)

∂Θ1

where Li(Θ1) and the first order conditions with respect to Θ1 = (δδδ′, vec(Λαα)
′, vec(Σǫǫ)

′)′1

are given in appendix B of this supplementary appendix, and N is the total number of
individuals.

1 While we have written our reduced form equation as

xxxit = πzzzit + π̄z̄zzi + aaai + ǫǫǫit, Biørn writes it as xxxit = Z ′

it
δδδ + aaai + ǫǫǫit,

where Zit = diag((zzz′
it
, z̄zz′

i
)′, . . . , (zzz′

it
, z̄zz′

i
)′) and δδδ = (vec(π)′, vec(π̄)′)′.

1
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The sample analog of population moment condition for the second step estimation is
given by

1

N
HΘ2

(Θ̂1, Θ̂2) =
1

N

N∑

i=1

HiΘ2
(Θ̂1, Θ̂2).

We have shown that the structural equations augmented with the control functions α̂ααi(Xi, Zi,Θ1)
and ǫ̂ǫǫit(Xi, Zi,Θ1) leads to the identification of Θ2. Let Θ

∗
2 be the true values of Θ2. Under

the assumptions we make, solving 1
N

∑N

i=1HitΘ2
(Θ̂1,Θ2) = 0 is asymptotically equivalent

to solving 1
N

∑N

i=1HitΘ2
(Θ∗

1,Θ2) = 0, where Θ̂1 is a consistent first step estimate of Θ1.

Hence Θ̂2 obtained by solving 1
N
HΘ2

(Θ̂1, Θ̂2) = 0 is a consistent estimate of Θ2.

To derive the asymptotic distribution of the second step estimates Θ̂2, consider the
stacked up sample moment conditions:

1

N

[
LΘ1

(Θ̂1)

HΘ2
(Θ̂1, Θ̂2)

]
= 0. (A-1)

A series of Taylor’s expansion of LΘ1
(Θ̂1), HΘ2

(Θ̂1, Θ̂2) and around Θ∗ gives

1

N

[
LΘ1Θ1

0
HΘ2Θ1

HΘ2Θ2

] [√
N(Θ̂1 −Θ∗

1)√
N(Θ̂2 −Θ∗

2)

]
= − 1√

N

[
LΘ1

HΘ2
.

]
(A-2)

In matrix notation the above can be written as

BΘΘN

√
N(Θ̂−Θ) = − 1√

N
ΛΘN

,

where ΛΘN
is evaluated at Θ∗ and BΘΘN

is evaluated at points somewhere between Θ̂ and
Θ∗. Under the standard regularity conditions for Generalized Method of Moments (GMM)
(see Newey, 1984) BΘΘN

converges in probability to the lower block triangular matrix
B∗ = limE(BΘΘN

). B∗ is given by

B∗ =

[
LΘ1Θ1

0
HΘ2Θ1

HΘ2Θ2

]

where LΘ1Θ1
= E(LiΘ1Θ1

), HΘ2Θ1
= E(HiΘ2Θ1

). 1√
N
ΛN converges asymptotically in dis-

tribution to a normal random variable with mean zero and a covariance matrix A∗ =
limE 1

N
ΛNΛ

′
N , where A∗ is given by

A∗ =

[
VLL VLH

VHL VHH

]
,

and a typical element of A∗, say VLH , is given by VLH = E[LiΘ1
(Θ1)HiΘ2

(Θ1,Θ2)
′]. Un-

der the regularity conditions
√
N(Θ̂ − Θ∗) is asymptotically normal with zero mean and

covariance matrix given by B−1
∗ A∗B

−1′
∗ , that is

√
N(Θ̂−Θ∗)

a∼ N[(0), (B−1
∗ A∗B

−1′
∗ )]. (A-3)
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By an application of partitioned inverse formula and some matrix manipulation we get
the asymptotic covariance matrix of

√
N(Θ̂2 −Θ2), V

∗
2 , where

V ∗
2 =H

−1
Θ2Θ2

VHHH
−1
Θ2Θ2

+H
−1
Θ2Θ2

H
−1
Θ2Θ1

{L−1
Θ1Θ1

VLLL
1′
Θ1Θ1

}H1′
Θ2Θ1

H
−1′
Θ2Θ2

−H
−1
Θ2Θ2

{HΘ2Θ1
L
−1
Θ1Θ1

VLH + VHLL
−1′
Θ1Θ1

H
′
Θ2Θ1

}H−1′
Θ2Θ2

(A-4)

To estimate V ∗
2 , sample analog of the B∗, BN given in (A-2), and sample analog of A∗,

AN = 1
N
ΛNΛN , have to be computed. A typical element of AN , say VLHN

, is given by

VLHN
= 1

N

∑N

i=1 LiΘ1
(Θ1)HiΘ2

(Θ̂1, Θ̂2)
′. The first and the second order conditions of the

first-stage likelihood function for estimating Θ1, which are used to compute the sample
analog of LΘ1Θ1

and to compute AN , are provided in appendix B of this supplementary
appendix.

For binary response model, the score function pertaining to the minimand in equation
(2.14) of the main text is given by

HiΘ2
(Θ1,Θ2) = −∇Θ2

mi(Xi, Zi,Θ2)
′[V(Xi, Zi, Υ̃)]−1[yi −mi(Xi, Zi,Θ2)]

= −∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1
ui,

where mi(Θ1,Θ2) ≡ mi(Xi, Zi,Θ2) is a T vector with tth element being m(Xit,Θ2) =
Φ(xxx′

itϕϕϕ+ρρραα̂ααi+ρρρǫǫ̂ǫǫit) ≡ mit(Θ1,Θ2), ui is a T vector with tth element being yit−mit(Θ1,Θ2),
and Ṽ ≡ V(Xi, Zi, Υ̃). Now

∇Θ2
mit(Θ1,Θ2) = φ(X′

itΘ2)X
′
it

where Xit = (xxx′
it, α̂αα

′
i(Θ1), ǫ̂ǫǫ

′
it(Θ1))

′ and Θ2 = (ϕϕϕ′, ρρρ′α, ρρρ
′
ǫ)

′.
Wooldridge (2002) and Wooldridge (2003) show (see Problem 12.11) that HΘ2Θ2

of B∗

is given by

HΘ2Θ2
= E[HiΘ2Θ2

(Θ1,Θ2)] = E[∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ2

mi(Θ1,Θ2)],

which can be approximated as

1

N

N∑

i=1

∇Θ2
mi(Θ̂1, Θ̂2)

′V̂
−1∇Θ2

mi(Θ̂1, Θ̂2),

where V̂ = V(Xi, Zi, Υ̂) = V(Xi, Zi, Θ̂2, ρ̂).

We now compute HΘ2Θ1
=

∑N

i=1HiΘ2Θ1
=

∑N

i=1

∂HiΘ2
(Θ1,Θ2)

∂Θ′

1

in order to compute the

sample analog of HΘ2Θ1
. Now,

∂HiΘ2
(Θ1,Θ2)

∂Θ′
1

= −
[
[u′

iṼ
−1 ⊗ I]

∂vec(∇Θ2
mi(Θ1,Θ2)

′)

∂Θ′
1

+ [ui ⊗∇Θ2
mi(Θ1,Θ2)

′]
∂vec(Ṽ

−1
)

∂Θ′
1

−∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ1

mi(Θ1,Θ2)

]
.
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Taking expectation of the above, we find that the first two terms are zero. Hence we have

HΘ2Θ1
= E[HiΘ2Θ1

(Θ1,Θ2)] = E[∇Θ2
mi(Θ1,Θ2)

′Ṽ
−1∇Θ1

mi(Θ1,Θ2)],

which can be approximated by

1

N

N∑

i=1

∇Θ2
mi(Θ̂1, Θ̂2)

′V̂
−1∇Θ1

mi(Θ̂1, Θ̂2).

The constituents, ∇Θ1
mit(Θ1,Θ2), of ∇Θ1

mi(Θ1,Θ2) are given by

∇Θ1
mit(Θ1,Θ2) = φ(X′

itΘ2)Θ
′
2

∂Xit

∂Θ′
1

,

which is row matrix with dimension that of Θ1, and where

∂Xit

∂Θ′

1

=




∂xxxit
∂δδδ′

∂xxxit
∂vec(Λαα)′

∂xxxit
∂vec(Σǫǫ)′

∂α̂ααi
∂δδδ′

∂α̂ααi
∂vec(Λαα)′

∂α̂ααi
∂vec(Σǫǫ)′

∂ǫ̂ǫǫit
∂δδδ′

∂ǫ̂ǫǫit
∂vec(Λαα)′

∂ǫ̂ǫǫit
∂vec(Σǫǫ)′



.

Since xxxit is not a function of Θ1,
∂xxxit

∂Θ′

1

= 0xxx, where 0xxx is a null matrix with row dimension

that of column vector xxxit and column dimension that of column vector Θ1. Using the
following matrix results:

∂vec(Ωbbb) = (bbb′ ⊗ Im)∂vec(Ω), ∂vec(Ω−1) = −(Ω′−1 ⊗ Ω−1)∂vec(Ω) and

∂vec(Ω)

∂vec(Ω)
= Imm,

where bbb is a vector of dimension m, Ω is a symmetric m × m matrix and Imm is the
mm×mm identity matrix, it can be shown that

∂α̂ααi

∂δδδ′
=

∂(diag(z̄zz′i, . . . , z̄zz
′
i)

′vec(π̄) + âaai)

∂δδδ′
= O

′
Zi − [TΣ−1

ǫǫ + Λ−1
αα]

−1Σ−1
ǫǫ Z

′
it,

∂ǫ̂ǫǫit
∂δδδ′

=
∂(xxxit − Z ′

itδδδ − âaai)

∂δδδ′
= −Z ′

it + [TΣ−1
ǫǫ + Λ−1

αα]
−1Σ−1

ǫǫ Z
′
it,

∂α̂ααi

∂vec(Λαα)′
= −

(( T∑

t=1

υυυ′
t

)
⊗ Im

)[(
Σ−1

ǫǫ ⊗ Im

)(
Σ′ ⊗ Σ

)]
Imm,

∂α̂ααi

∂vec(Σǫǫ)′
= −

(( T∑

t=1

υυυ′
t

)
⊗ Im

)[(
Im ⊗ Σ

)(
Σ−1

ǫǫ ⊗ Σ−1
ǫǫ

)
+

(
Σ−1

ǫǫ ⊗ Im

)(
Σ′ ⊗ Σ

)]
TImm,
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∂ǫ̂ǫǫit
∂vec(Λαα)′

=
−∂α̂ααi

∂vec(Λαα)′
, and

∂ǫ̂ǫǫit
∂vec(Σǫǫ)′

=
−∂α̂ααi

∂vec(Σǫǫ)′
,

where OZi = diag((0′z, z̄zz
′
i)
′, . . . , (0′z, z̄zz

′
i)
′), 0z denoting a vector of zeros with dimension that

of zzzit, υυυt = xxxt − πzzzt, and Σ = [TΣ−1
ǫǫ + Λ−1

αα]
−1.

Since HiΘ2Θ1
(Θ̂1, Θ̂2) and HiΘ2Θ2

(Θ̂1, Θ̂2) converge almost surly to HiΘ2Θ1
(Θ∗

1,Θ
∗
2) and

HiΘ2Θ2
(Θ∗

1,Θ
∗
2) respectively, by the weak LLN 1

N

∑N

i=1HiΘ2Θ1
(Θ̂1, Θ̂2) will converge in

probability to E(HiΘ2Θ1
(Θ∗

1,Θ
∗
2)) = HΘ2Θ1

and 1
N

∑N

i=1HiΘ2Θ2
(Θ̂1, Θ̂2) will converge in

probability to E(HiΘ2Θ2
(Θ∗

1,Θ
∗
2)) = HΘ2Θ2

.

A.1. Hypothesis Testing of Average Partial Effects

In section 2 we discussed the estimation of average partial effect (APE) of a variable
w. To test various hypothesis in order to draw inferences about the APE’s we need to
compute the standard errors of their estimates. From (2.15) of the main text we know that
the estimated APE of w on the probability of yit = 1 given xxxit = x̄xx is given by

∂P̂r(yit = 1|x̄xx)
∂w

=
1

NT

N∑

i=1

T∑

t=1

ϕ̂wφ

(
X̄

′
itΘ̂2

)
≡ 1

NT

N∑

i=1

T∑

t=1

gwit(Θ̂2),

where X̄it = (x̄xx′, ˆ̂αααi(Θ̂1)
′, ˆ̂ǫǫǫit(Θ̂1)

′)′ and Θ̂2 = (ϕ̂ϕϕ′, ρ̂ρρα, ρ̂ρρǫ)
′. Now, we know that by the linear

approximation approach (delta method), the asymptotic variance of ∂P̂r(yit=1|x̄xx)
∂w

can be
estimated by computing

[
1

NT

N∑

i=1

T∑

t=1

∂gwit(Θ̂2)

∂Θ̂′
2

]
V̂ ∗
2

[
1

NT

N∑

i=1

T∑

t=1

∂gwit(Θ̂2)

∂Θ̂′
2

]′
, (A-5)

where V̂ ∗
2 , the second stage error adjusted covariance matrix of Θ2 estimated at Θ̂2, is given

in (A-4). ∂gwit(Θ̂2)

∂Θ̂′

2

in (A-5) turns out to be

∂gwit(Θ̂2)

∂Θ̂′
2

= φ(X̄′
itΘ̂2)[ew − ϕ̂w(X̄

′
itΘ̂2)X̄it]

where ew is a column vector having the dimension of Θ′
2 and with 1 at the position of ϕw

in Θ2 and zeros elsewhere.
If w is a dummy variable then the estimated APE of w is given by

∆w Pr(yit = 1) =
1

NT

N∑

i=1

T∑

t=1

Φ(x̄xx−w, w = 1, ˆ̂αααi, ˆ̂ǫǫǫit)− Φ(x̄xx−w, w = 0, ˆ̂αααi, ˆ̂ǫǫǫit)

=
1

NT

N∑

i=1

T∑

t=1

Φit(w = 1)− Φit(w = 0)

=
1

NT

N∑

i=1

T∑

t=1

∆wΦit().
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To obtain the variance of the above, again by the delta method we have the estimate of
the asymptotic variance of ∆w Pr(yit = 1) given by

[
1

NT

N∑

i=1

T∑

t=1

∂∆Φit(.)

∂Θ′
2

]
V̂ ∗
2

[
1

NT

N∑

i=1

T∑

t=1

∂∆Φit(.)

∂Θ′
2

]′
, (A-6)

where

∂∆Φit(.)

∂Θ′
2

=
∂Φit(w = 1)

∂Θ′
2

− ∂Φit(w = 0)

∂Θ′
2

= φit(w = 1)

[
X̄it−w

1

]′
− φit(w = 0)

[
X̄it−w

0

]′
.

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION OF THE REDUCED FORM
EQUATIONS

In this section we briefly describe Biørn (2004) step wise maximum likelihood procedure
to estimate the reduced form system of equation

xxxit = Z ′
itδδδ + aaai + ǫǫǫit, (B-1)

where Zit = diag((zzz′it, z̄zz
′
i)
′, . . . , (zzz′it, z̄zz

′
i)
′) and δδδ = (vec(π)′, vec(π̄)′)′. While Biørn (2004)

deals with unbalanced panel, here we assume that our panel is balanced. Let N be the
total number of individuals. Let N be the total number of observations, i.e., N = NT . Let
xxxi(T ) = (xxx′

i1, . . .xxx
′
ip)

′, Zi(T ) = (Z ′
i1, . . . Z

′
iT )

′ and ǫǫǫi(T ) = (ǫǫǫ′i1, . . . ǫǫǫ
′
iT )

′ and write the model as

xxxi(T ) = Z ′
i(T )δδδ + (ep ⊗ aaai) + ǫǫǫi(T ) = Z ′

i(T )δδδ + uuui(T ), (B-2)

Now,

E(uuui(T )uuu
′
i(T )) = IT ⊗ Σǫǫ + ET ⊗ Λαα = KT ⊗ Σǫǫ + JT ⊗ Σ(T ) = Ωu(T )

where

Σ(T ) = Σǫǫ + TΛαα,

where IT is the T dimensional identity matrix, eT is the (T ×1) vector of ones, ET = eT e
′
T ,

JT = (1/T )ET , and KT = IT −JT . The latter two matrices are symmetric and idempotent
and have orthogonal columns, which facilitates inversion of Ωu(T ).

B.1. GLS estimation

Before addressing the maximum likelihood problem, we consider the GLS problem for
δδδ when Λα and Σǫǫ are known. Define Qi(T ) = uuu′

i(T )Ω
−1
u(T )uuui(T ), then GLS estimation is the
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problem of minimizing Q =
∑N

i=1Qi(T ) with respect to δδδ. Since Ω−1
u(T ) = KT ⊗ Σ−1

ǫǫ + JT ⊗
(Σǫǫ + TΛαα)

−1, we can rewrite Q as

Q =

N∑

i=1

uuu′
i(T )[KT ⊗ Σ−1

ǫǫ ]uuui(T ) +

N∑

i=1

uuu′
i(T )[JT ⊗ (Σǫǫ + TΛαα)

−1]uuui(T ).

GLS estimator of δδδ when Λαα and Σǫǫ are known is obtained from ∂Q/∂δδδ = 0, and is given
by

δ̂δδGLS =

[ N∑

i=1

Z ′
i(T )[KT ⊗ Σ−1

ǫǫ ]Zi(T ) +

N∑

i=1

Z ′
i(T )[JT ⊗ (Σǫǫ + TΛαα)

−1]Zi(T )

]−1

×

[ N∑

i=1

Z ′
i(T )[KT ⊗ Σ−1

ǫǫ ]xxxi(T ) +

N∑

i=1

Z ′
i(T )[JT ⊗ (Σǫǫ + TΛαα)

−1]xxxi(T )

]
.

(B-3)

B.2. Maximum Likelihood Estimation

Now consider ML estimation of δδδ, Σǫǫ, and Λαα. Assuming normality of the individual
effects and the disturbances, i.e., aaai ∼ IIN(0,Λαα) and ǫǫǫit ∼ IIN(0,Σǫǫ), then uuui(T ) =
(eT ⊗ aaai) + ǫǫǫi(T ) ∼ IIN(0mT,1,Ωu(T )). The log-likelihood functions of all xxx’s conditional on
all Z’s for an individual and for all individuals in the data set then become, respectively,

Li =
−mT

2
ln(2π)− 1

2
ln |Ωu(T )| −

1

2
Qi(T )(δδδ,Σǫǫ,Λαα), (B-4)

L =
N∑

i=1

Li =
−mNT

2
ln(2π)− 1

2
N ln |Ωu(T )| −

1

2

N∑

i=1

Qi(T )(δδδ,Σǫǫ,Λαα), (B-5)

where

Qi(T )(δδδ,Σǫǫ,Λαα) = [xxxi(T ) − Z ′
i(T )δδδ]

′[KT ⊗ Σ−1
ǫǫ + JT ⊗ (Σǫǫ + pΛαα)

−1][xxxi(T ) − Z ′
i(T )δδδ],

and |Ωu(T )| = |Σ(T )||Σǫǫ|T−1.
Biørn splits the problem of estimation into: (A) Maximization of L with respect to δδδ for

given Σǫǫ and Λαα and (B) Maximization of L with respect to Σǫǫ and Λαα for given δδδ.
Subproblem (A) is identical with the GLS problem, since maximization of L with respect
to δδδ for given Σǫǫ and Λαα is equivalent to minimization of

∑N

i Qi(T )(δδδ,Σǫǫ,Λαα), which
gives (B-3). To solve subproblem(B) Biørn derives expressions for the derivatives of both
Li and L with respect to Σǫǫ and Λαα. The complete stepwise algorithm for solving jointly
subproblems (A) and (B) then consists in switching between (B-3) and minimizing (B-5)
with respect to Σǫǫ and Λαα to obtain Σǫǫ and Λαα and iterating until convergence.
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The first order conditions for the log-likelihood function for an individual i with respect
to δδδ, vech(Σǫǫ) and vech(Λαα) are:

∂Li

∂δδδ
= [xxxi(T )Z

′
i(T )δδδ]

′[KT ⊗ Σ1
ǫǫ + JT ⊗ (Σǫǫ + pΣαα)

1]Z ′
i(T ),

∂Li

∂vech(Σǫǫ)
= −1

2
Lmvec

[
Σ−1

(T ) + (T − 1)Σ−1
ǫǫ − Σ−1

(T )Bui(T )Σ
−1
(T ) − Σ−1

ǫǫ Wui(T )Σ
−1
ǫǫ

]
,

and

∂Li

∂vech(Λαα)
= −1

2
Lmvec

[
TΣ−1

(T ) − TΣ−1
(T )Bui(T )Σ

−1
(T )

]
,

where vech(Σǫǫ) and vech(Λαα) are column-wise vectorization of the lower triangle of the
symmetric matrix Σǫǫ and Λαα, and Lm is an elimination matrix. Wui(T ) and Bui(T ) respec-
tively are defined as follows

Wui(T ) = Ẽi(T )KT Ẽ
′
i(T ) and Bui(T ) = Ẽi(T )JT Ẽ

′
i(T ),

where Ẽi(T ) = [uuui1, . . . ,uuuiT ] is a (m × T ) matrix and uuui(T ) = vec(Ei(T )), ‘vec’ being the
vectorization operator. That is, the disturbances defined in (B-2) for an individual i has
been arranged in (m× T ) matrix, Ẽi(T ).

The second order conditions are:

∂2Li

∂δδδ∂δδδ′
= −Zi(T )[KT ⊗ Σ−1

ǫǫ + JT ⊗ (Σǫǫ + pΣαα)
−1]Z ′

i(T )

∂2Li

∂δδδ∂vec(Λαα)′
= −T (uuui(T ) ⊗ Zi(T ))(ITKm,T ⊗ Im)(vec(JT )⊗ Σ−1

(T ) ⊗ Σ−1
(T ))

∂2Li

∂δδδ∂vec(Σǫǫ)′
= −(uuui(T ) ⊗ Zi(T ))(IT ⊗Km,T ⊗ Im)(vec(KT )⊗ Σ−1

ǫǫ ⊗ Σ−1
ǫǫ + vec(JT )⊗ Σ−1

(T ) ⊗ Σ−1
(T ))

∂2Li

∂vec(Λαα)∂δδδ′
= −T

2
(Σ−1

(T ) ⊗ Σ−1
(T ))[(Ẽi(T )JT ⊗ Im) + (Im ⊗ Ẽi(T )JT )Km,T ]Z

′
i(T )

∂2Li

∂vec(Λαα)∂vec(Λαα)′
=

T 2

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]

∂2Li

∂vec(Λαα)∂vec(Σǫǫ)′
=

T

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]
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∂2Li

∂vec(Σǫǫ)∂δδδ′
=− 1

2
(Σ−1

(T ) ⊗ Σ−1
(T ))[(Ẽi(T )JT ⊗ Im) + (Im ⊗ Ẽi(T )JT )Km,T ]Z

′
i(T )

− 1

2
(Σ−1

ǫǫ ⊗ Σ−1
ǫǫ )[(Ẽi(T )KT ⊗ Im) + (Im ⊗ Ẽi(T )KT )Km,T ]Z

′
i(T )

∂2Li

∂vec(Σǫǫ)∂vec(Λαα)′
=

T

2
[(Σ−1

(T ) ⊗ Σ−1
(T ))− Σ−1

(T )Bui(T )Σ
−1
(T ) ⊗ Σ−1

(T ) − Σ−1
(T ) ⊗ Σ−1

(T )Bui(T )Σ
−1
(T )]

∂2Li

∂vec(Σǫǫ)∂vec(Σǫǫ)′
=
1

2
[Σ−1

(T ) ⊗ Σ−1
(T ) + (T − 1)Σǫǫ ⊗ Σǫǫ − ΣǫǫBui(T )Σ(T ) ⊗ Σ−1

(T )

− Σ−1
(T ) ⊗ Σ−1

(T )Bui(T ) − Σ−1
ǫǫ Wui(T )Σ

−1
ǫǫ ⊗ Σ−1

ǫǫ − Σ−1
ǫǫ ⊗ Σ−1

ǫǫ Wui(T )Σ
−1
(T )].
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KOKKUVÕTE 

 

Paneelandmete Binaarne Mudel Triangulaarses Süsteemis  

 

Käesoleva artikli peamine eesmärk oli arendada välja meetod punkthinnangute saamiseks 

struktuursetele indikaatortele nagu töötlusefektid (treatment effects) paneelandmete 

binaarsetes mudelites triangulaarses süsteemis, võttes seejuures arvesse 

mitmedimensioonilist mittevaadeldavat heterogeensust. Mittevaadeldava heterogeensuse 

liikmete hulka kuuluvad ajas mittevarieeruvad juhuslikud efektid ja idiosünkraatilised 

vealiikmed. Me esmalt identiftseerime taandatud kujul võrrandite heterogeensuse liimete 

oodatavad väärtused tingimuslikuna endogeensete ja eksogeensete muutujate suhtes 

kõikidel ajaperioodidel, ja seejärel näitame, et antud oodatavate väärtuste juures on meid 

huvitavad näitajad identifitseeritavad. Seejärel pakume välja lähenemise, et need 

heterogeensuse liikmete tingimuslikud oodatavad väärtused on kasutatavad taandatud kujul 

võrrandites kontrollfunktsioonina. 

Antud väljapakutud meetod panustab mitmel huvitaval viisil teaduskirjandusse. Esiteks, 

saavutab antud meetod keskmiste osaliste efektide identifitseerimise triangulaarses 

mitmedimensioonilise heterogeensusega süsteemis. Teiseks, triangulaarsetes süsteemides 

meie lähenemisega sarnaste eelduste korral nõuab meie välja pakutud kontrollfunktsiooni 

meetod nõrgemaid kitsendusi kui traditsioonilised kontrollfunktsiooni meetodid. 

Kolmandaks võimaldab antud meetod kasutada väikese mittenulliliste väärtuste 

piirkonnaga (support) instrumente, mis sai võimalikuks tänu paneelandmete kasutamisele 

ja teatud heterogeensuse liikmete ajas mitte varieerumisele. Samuti, Monte-Carlo 

eksperimendid näitavad, et meie väljapakutud meetod töötab paremini võrreldes 

alternatiivsete paneelandmete binaarsete regressioonimeetoditega. 

Antud hinnangufunktsiooni rakendati artiklis uurimaks taludes sissetulekute ja rikkuse 

(maa ja muude talus tootmises kasutatavate varade) põhjuslikku mõju lapstööjõu 

kasutamisele Indias. Artiklis leiti, et kõrgem sissetuleku ja kõrgem tootlike 

põllumajanduslike varade omamine oluliselt alandasid lapstööjõu kasutamise 

esinemissagedust, mis viitab tootlike põllumajanduslike varade tugevale sissetulekuefektile. 

Teiseks, suurem maaomandus tõstab lapstööjõu esinemissagedust, mis viitab lapstööjõu 

asendusefektile. Kolmandaks, eksogeensuse test näitas, et maaomandus on määratud 

endogeenselt koos majapidamise tööpakkumise otsustega, mis on vastupidine tulemus 

eeldusele, mida on kasutanud enamik arengumaades lapstööjõu kasutamist uurinud 

empiirilistest töödest. 
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